3F2 Systems and Control
by Ziyi Z.,Page 1in 3

1 State-Space Systems
1.1 State Space Descriptions of Dyna-
mical Systems

The states are a set of system variables
that represent the memory of a (causal)
dynamical system. A d}):namlcal system’s
state x must satisfy the following two
properties:

1. For any t, < t1,x(f1) can always
be determined from x(f,) and
{u(r),to <t <t1}.

2. The outputs p at time t, is a memo-
ryless function of x(t) and u(t).

1.2 Linearizing Nonlinear Dynamical
Systems

Suppose we have a nonlinear (time in-
variant) dynamical system in state space

form: = o u)
x=f(xu
S{ y=8x)

Consider small perturbations from an
equilibrium state x, when x(t) = u,:

0x = Adox + Bou
of of
A= 55 (xpu,) and B = 57 (xp, 1, ):
Ifi I If
dx;  dxy dx,
o 9f
A= dxy dx,
oy oy
Jxy dx,, x=x,, =1,
9fi  9fi 9fi
duq diy du,,
B= . .
fn Ifu
a”1 aum X=X,,U=u,
9g(x,)
Similarly, 6y = Cox where C = E

For linear time-invariant dynamical sys-
tems, the standard form is:

= Ax(t)+ Bu(t)
t) = Cx(t) + Du(t)

For implicit state equations, F(%,x,u) =

0. The linearized model can be derived
from the equilibrium F (0, x,,u,) = 0:

Lox+ Mox+ Nou =0

Sx~-L "Mox- L 'Nsu

JF JF
L = T(O x ) M = 7;(9’&6’%6) and

N— (Ox U,).

1.3 State-space Trajectories

Consider the free motion of the time in-
variant dynamical system x = f(x)

)+ f(x

For a linear time-invariant dynamical
system x = Ax where A has eigenvalues
A; with corresponding eigenvectors w;.

Suppose x = kw;:

x(t+0t)=

=hx=x(t)=e""xg

Velocity fields in the state-space:
1. Complex eigenvalue with positive
real part = spiral out.

2. Complex eigenvalue with negative
real part = spiral in.

3. Positive eigenvalue = unstable
manifolds.

4. Negative eigenvalue = stable ma-
nifolds.
Given the complex conjugate roots A =
ptio:

o P

o /p2+02

Rule of thumb: Number of cycles to half-
amplitude =~ %

1.4 Solutionsto Linear State Equations

Taking Laplace Transform of the linear
time-invariant dynamical system:

C(sI —A) Iy
+(D+C(sT-A)”

Y(s)=
'B)U(s)
First term is the initial condition respon-

se and second term is the input response.
For xy = 0:

Y(s)=(D+C(sI - A)"'B)U(s)

G(s) = D+C(sI—A)"!Bis called the trans-
fer function matrix. Poles of G(s) are va-
lues of B at which the transfer function
becomes infinite:

det(sI-A)=0

Poles of G(s) C eigenvalues of A.

For u(t) =0, X(s) = (sI = A) ' xo:
x(t) = L7 ((sT - A)71)xg = D(t)x
D(t) is called the state transition matrix:
(1) = L7 (s -y} LT A

Change of state coordinates: If A= T"VAT

then et = 771 AtT

For non-defective A we have the eigenva-
lue/eigenvector decomposition:

A=WAW!

So that for T = W1 we have A =
diag {1;} and eM = diag{e/\it}

Semigroup property:

eA(tl+t2) _ eAtl eAtz _ eAtZeAtl

Inverse:
(eAt)*l _ At

Derivative:

d
4 At

At At
=A = A
dt (4 (4

Integral:

t
J ATdr=A1eAT A1 if det(A) =0
0

1.5 Convolution Integral
Consider x — Ax = Bu:

y(t) = Cetlxg
t
+Du(t)+ j CeA=Bu(t)dt
0
For x5 = 0:

t
:j H(t—t)u(t)dt = H(t) »u(t)
0

H(t) is called the impulse response matrix:

t>0

N At
H(t):{ Da(t)+OCe B t20

Note that the transfer function, G(s) =
L(H(t)).

1.6 Frequency Response

2.2 The Root-Locus Method

Consider a linear time-invariant system Root-locus diagram shows the locations

that is asymptotically stable. For a sinusoi-
dal input uj(t) = Ajcos (a)ot + Qj):
lim y;(t) = Bj cos(wyt + ¢;)
t—o0

m

Biel®i = Zg,‘j (ja)o)Ajeij

j=1
1.7 State Space Equations for Composi-
te Systems
Cascade of two systems: Y(s) =

G2 (s)G1(s)U(s) is realized by:

i[ xq(t) ] [ Aq 0 H xq(#)

dt| xo(t) B,Cy Ap X(1)
B

+[ 32]1)1 ]ﬂ(t)

v(t)=[ D2C1 Cp ]x(t)+DyDyu(t)

Parallel combination of two systems: Y (s) =
(G1(s)+ Ga(s)) U(s) is realized by:

w2010 a0
+[ E; ]z(t)
y(t)=[ C1 Ca ]x(t)+ (D1 + Dy)u(t)

2 Classical Methods

2.1 Feedback Control

Let L(s) be the (open) loop transfer func-
tion (return-ratio): L(s) = G(s)K(s)
Complementary Sensitivity:

_ L(s)
=171
v=TF=-Th

7 is the reference and 7 is the sensor noi-
se.

Sensitivity:
1
SO =131
e dT/T  _ -
e=ST7, =G/ y=GSd

¢ is the error and d is the disturbance.
Trade-off between S and T:

S(s)+T(s)=1

]

of the roots of 1 +kL(s) =0 for k > 0.
n(s) c(s—z1)(s—z2)...(s—zy)

L = — =

O= 49 = =p1)s=pa)(s—pa)

Rules for constructing the root-locus plot:

1. The root-locus diagram is symme-
tric with respect to the real axis
and consists of n branches.

2. For k = 0 the n branches start at
the open loop poles p;. As k —
ranches tend to the zeros z;

and n—m branches tend to infinity.

3. Points on the real axis which lie to
the left of an odd number of poles
and zeros are on the root-locus.

4. The breakaway points are those
points on the root-locus for which

%L(s) = 0( same as dk/ds = 0).

5. As k — oo, the n — m branches
which tend to infinity do so along
straight line asymptotes at angles
(2€+1)7/(n—m) to the +ve real axis

(¢=0,...,n—m-1), and emanate
from the point:
Z?:l pi— Z:il 2i
n—m

The angle condition for sy to be on the
root-locus:

n
ZZ 50 —2i) ZL $0 = Pi)
= (2€ +1)m
At a point sy on the root-locus:

_ 1 _ lﬁ?:1|50*Pi|
IL(so)l ¢ TTiZ; Iso -zl

2.3 The Routh-Hurwitz Criterion

The closed-loop characteristic equation
1 + G(s)K(s) = 0 has the same roots as
dg(s)dk (s) +ng(s)ng(s) = 0.

The Routh-Hurwitz criterion: Consider
the polynomial (assume ag >0 ):

ags" +ays"V +aps" 2 4t ay_qs+ay
All roots have negative real parts only if
a; > 0 for each i. A Routh array can be

constructed for arbitrary n.
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3 Observability and Observers

3.1 Observability

A system is called observable if we can de-
duce the state, x(t), from measurements
of u(7) and y(t) over some time interval
(t1,t2) with 1 <t < t5.

Consider differentiating y(t) to give:

y(t) C
(1) CA
ORI CEE I W
y(”‘.l)(t) can-1
0
CBu(t)
.| CABu(t)+CBu(t)

CA" 2By +-.-+ CBu("2)
Defining the observability matrix:

C
CA

CA.n—l

The Observability test: The system is ob-
servable if and only if rank Q = n.

If a system is not observable, there will
exist a vector x, # 0 for which Qx, = 0.
This is called an unobservable state.
Observability Gramian:

5]
W, (1) :fo ATtcT ety

W, (t1) is a positive semi-definite ma-
trix. The system will be observable if
dTW, (t1)d > 0 foralld = 0, i.e. if W, ()
is a positive definite matrix.

_[Otl HE(t) —go(t)u2 dt=dT W, (t)d

3.2 Observers

Use a state observer (Luenberger Obser-
ver) whose state £(t), approaches x(t) as

t — oo:

=A
=C

+Bg+L(z—2)

[ [
[&=> [&=>

Consider the error e(t) = x(t) — X(¢):

¢=x-%=(A-LCe

If the eigenvalues of (A - LC) are large
and negative, then eA~LC) — 0 quickly
as t increases. We can arbitrarily assign
the eigenvalues of (A — LC) by choice of
L if and only if the system is observable.
Consider random turbulence d(t) and
measurement with noise n(t)

{ X = Ax(t) + Bd(1)
y(t) = Cx(t) +n(t)

Use the observer x(t) = AX(t) + L[y(t) —
Cx(t)] for tracking disturbances and
ignoring noise:

1. If d large, n small: Believe the mea-
surements and use large L.

2. If d small, n large: Believe model
and use small L.

Sensor bias estimation: For sensor measu-

rement with bias y = 0 + b,,, augment
. T

state vector x = [G,G,bw] and assume

bias is constant b, = 0.

Disturbance observer: Consider the aug-
mented state-space model:

d=0
X=Ax+B(u+d)
y=Cx

The observability matrix of the augmen-
ted model is:

o[ o5 o4 |
rankQ:rank[ _C‘%_IB QCA ]:n+m

The internal model principle: A disturban-
ce modeled by d + wéd = 0 is observable

iff G(jwg) has rank m.
3.3 Observable and Unobservable Sub-
spaces

QR factorization: If the rankQ =r < n
then there exists a nonsingular n x n ma-

trix T and a n x r matrix Q; of rank r,
such that Q = [ Q1 0 ]T.

Change the state coordinates to ¥ = Tx:

In these coordinates if we partition the
state, X = [ % ] with %, of dimension r

and compatfbly partition:

i_| A A 5_| B
A=| " - ; B=| 3 ;
[ Ay A By
c=[¢ &

Then CQ = 0, A~12 = O, and (A~11,Cl) is
observable. In these state coordinates we
have X; = A11x; +B1u, vy = C1x; and the

input/output response (i.e. the transfer
function) depends only on X%; and the
states X, are all unobservable.

Subspace: Let T™! = [XY], Y in R"™" is a

basis for null(Q), which is called O, the
unobservable subspace and X comple-
ments Y.

4 Controllability and State Feedback
4.1 Controllability

A state-space model is controllable if gi-
ven an initial state x; and a final state Xt

there exists an input signal u(:) that trans-
fers the state from x(0) = x( to x(T) = Xy

in a finite time T > 0.
For discrete-time model: x[k+1] = Ax[k]+
Bu[k]

xp—A'xg =
un-1]
(51 s ]|
u[0]
Defining the controllability matrix:

P=[ B |A"1B |

A solution exists if the controllability ma-
trix P has full rank n.

Controllability Gramian:
U AtppT AT
W, (t1) :J e "BB* et TdT
0
If det W, (t1) # O then we can reach any

x(t1) from x(0) = 0 using u(t) = u,(t) =
BTeA (0w, (1) ;.

131
fo () g (Dt = xTWe (1) x,

The inverse of the controllability Grami-
an defines the input energy required to
transfer the state from xg = 0 to x.

If W, (1) is a singular matrix there exists
z # 0 such that zT W, (t;)z = 0:

51
J (gTeATB)(BTeATTg)dT =0
0

Hence z is in Null space of PT = Null

space of W, (t1). The null space of PT de-
fines the unreachable subspace.

The input, u(t) = u,(t) =
BT AT (ti-1) W (1 )_1 x;, takes the state
from x(0) = 0 to x (1) = xq with minimum
energy.

4.2 State Feedback Design

The system: x = Ax + Bu, with state feed-
back: u = -Kx + Mr, giving closed loop:

X =(A-BK)x+BMr

The closed loop poles will be the eigen-
values of (A — BK) which can be placed
arbitrarily by choice of K if and only if
(A, B) is controllable.

In steady-state: x =0
y=Cx=C(-A+BK)"!BMr

Choose M such that C(~A+BK)™1BM =1
and y(t) — r after a step change with
speed given by eigenvalues of (A — BK).

Integral action: Augment the state by the
integral of the error ¢ = r—y = r—Cx with

state feedback:
u=-Kix-Kpe

Choose K1, K> to assign the closed-loop
poles (possible if augmented system con-
trollable) and then e(t) - 0 = y(t) > r
after a step change.

4.3 Subspaces and Minimal Realizati-
ons

(A, B) controllable iff (AT,BT) observa-

ble. Hence any statement about obser-
vability can be turned into a statement
about controllability and vice-versa.

If rank Q = r < n, then there exists a de-

composition ¥ = ;% ] such that:

A:[ 0|

(AH,Cl) defines an observable subsys-

tem. The state %, does not affect the out-
put and is unobservable.

A 0 ~ ~
- - ; C=| C
Ay Ap ] [ !

If rank P = r < n, the corresponding de-
composition leads to:

A — All . B= Bl

i A Ao}

The subsystem (AU,Bl ) is controllable.
The state x; lives in the reachable sub-
space. The state x, is uncontrollable and
its trajectory is not affected by the input.
Kalman decomposition:

Ay
A2a

o o 9T
=[ % X X3 iy ]

X; and %, are controllable while X, and
X3 are observable.

[ &=

A1 * * *
. 0 App 0 *
x= 0 A33 * X
0 Agq
+[ By By 0 0]Tu
py=[0 C 0 Cylx

H(s) = Cz(sI—Azz)_l B, only depends
on the states that are both observable and
controllable.

A set of state equations given by
(A,B,C,D) is called a minimal realizati-
on of its transfer function, G(s) = D +
C(sI-A)~!B, if there does not exist a state
space realization of G(s) with a lower
state dimension. A realization is mini-
mal if and only if it is both controllable
and observable.

{ %y = Ayp%) + Bou
v =0Coxp

For a sintgle—input/single—output (SISO)
transfer function, non-minimal realizati-
on implies pole-zero cancellation.

5 Combined System Control

5.1 Observers with State Feedback

We can combine the observer and the

state feedback to control a system with
u = —Kx+Mr. Consider the error e = x—X:

é=(A-LC)e
u=-K(x-e)+Mr
x=(A-BK)x+BKe+BMr

Hence the closed loop system:

[ e
BM]

),
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]

Eigenvalues of [ >0< % ] = { eigenvalues

y=1c o

IR

of X}U{ eigenvalues of Z}. So closed-loop
poles are at the eigenvalues of (A — BK)
and those of (A —LC). e is not affected by
r so that e(t) — 0.

5.2 The Linear Quadratic Regulator
Consider the system x(0) = x, and the
problem of choosing u to minimise
fooo v Ty +uT Rudt for some positive defi-
nite (weight) matrix R = RT > 0.

The Control Algebraic Ricatti Equation
(CARE):

XA+ATx+cTc-xBR'BTXx =0

If the the system is controllable and ob-
servable, then the equation has a unique
positive definite solution X = XT > 0.
The minimizing control is the state feed-
back u = —Kx with K = R"!BTX.

The weight matrix R determines the rela-
tive penalty over the input and the out-
put energy.

1. Cheap control: choose R = rI and
letr —0

2. Minimum energy control: choose
R=rI and let r — co.

R is often chosen diagonal. A different
scaling factor can be applied to different
actuators.

5.3 Kalman Filter

(The End)



