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1 State-Space Systems
1.1 State Space Descriptions of Dyna-

mical Systems
The states are a set of system variables
that represent the memory of a (causal)
dynamical system. A dynamical system’s
state x must satisfy the following two
properties:

1. For any to < t1,x (t1) can always
be determined from x (to) and
{u(τ), to ≤ τ ≤ t1}.

2. The outputs y at time t, is a memo-
ryless function of x(t) and u(t).

1.2 Linearizing Nonlinear Dynamical
Systems

Suppose we have a nonlinear (time in-
variant) dynamical system in state space
form:

S
{
ẋ = f (x,u)
y = g(x)

Consider small perturbations from an
equilibrium state xe when x(t) = ue:

δẋ � Aδx+Bδu

A =
∂f

∂x

(
xe,ue

)
and B =

∂f

∂u

(
xe,ue

)
:

A =



∂f1
∂x1

∂f1
∂x2

· · · ∂f1
∂xn

∂f2
∂x1

· · · ∂f2
∂xn

...
...

∂fn
∂x1

· · · ∂fn
∂xn


x=xe ,u=ue

B =


∂f1
∂u1

∂f1
∂u2

· · · ∂f1
∂um

...
...

∂fn
∂u1

· · · ∂fn
∂um


x=xe ,u=ue

Similarly, δy = Cδx where C =
∂g(xe)
∂x

.

For linear time-invariant dynamical sys-
tems, the standard form is:

S
{
ẋ(t) = Ax(t) +Bu(t)
y(t) = Cx(t) +Du(t)

For implicit state equations, F(ẋ,x,u) =
0. The linearized model can be derived
from the equilibrium F

(
0,xe,ue

)
= 0:

Lδẋ+Mδx+Nδu ' 0

δẋ ' −L−1Mδx −L−1Nδu

L = ∂F
∂ẋ

(
0,xe,ue

)
, M = ∂F

∂x

(
0,xe,ue

)
and

N = ∂F
∂u

(
0,xe,ue

)
.

1.3 State-space Trajectories
Consider the free motion of the time in-
variant dynamical system ẋ = f (x):

x(t + δt) � x(t) + f (x(t))δt

For a linear time-invariant dynamical
system ẋ = Ax where A has eigenvalues
λi with corresponding eigenvectors wi .
Suppose x = kw1:

ẋ = λ1x⇒ x(t) = eλ1tx0

Velocity fields in the state-space:

1. Complex eigenvalue with positive
real part⇒ spiral out.

2. Complex eigenvalue with negative
real part⇒ spiral in.

3. Positive eigenvalue ⇒ unstable
manifolds.

4. Negative eigenvalue⇒ stable ma-
nifolds.

Given the complex conjugate roots λ =
ρ ± iσ :

ζ = −
ρ√

ρ2 + σ2

Rule of thumb: Number of cycles to half-
amplitude ' 11

ζ .

1.4 Solutions to Linear StateEquations
Taking Laplace Transform of the linear
time-invariant dynamical system:

Y (s) = C(sI −A)−1x0

+
(
D +C(sI −A)−1B

)
U (s)

First term is the initial condition respon-
se and second term is the input response.
For x0 = 0:

Y (s) =
(
D +C(sI −A)−1B

)
U (s)

G(s) =D+C(sI−A)−1B is called the trans-
fer function matrix. Poles of G(s) are va-
lues of B at which the transfer function
becomes infinite:

det(sI −A) = 0

Poles of G(s) ⊆ eigenvalues of A.

For u(t) = 0, X(s) = (sI −A)−1x0:

x(t) = L−1
(
(sI −A)−1

)
x0 = Φ(t)x0

Φ(t) is called the state transition matrix:

Φ(t) = L−1
{
(sI −A)−1

} def= eAt

Change of state coordinates: If A = T −1AT

then eAt = T −1eAtT .
For non-defective A we have the eigenva-
lue/eigenvector decomposition:

A =WΛW −1

So that for T = W −1 we have Λ =
diag {λi } and eΛt = diag

{
eλi t

}
.

Semigroup property:

eA(t1+t2) = eAt1eAt2 = eAt2eAt1

Inverse: (
eAt

)−1
= e−At

Derivative:

d
dt
eAt = AeAt = eAtA

Integral:∫ t

0
eAτdτ = A−1eAt−A−1 if det(A) , 0

1.5 Convolution Integral
Consider ẋ −Ax = Bu:

y(t) = CeAtx0

+Du(t) +
∫ t

0
CeA(t−τ)Bu(τ)dτ

For x0 = 0:

y(t) =
∫ t

0
H(t − τ)u(τ)dτ =H(t) ∗u(t)

H(t) is called the impulse response matrix:

H(t) =
{
Dδ(t) +CeAtB t ≥ 0

0 t < 0

Note that the transfer function, G(s) =
L(H(t)).

1.6 Frequency Response
Consider a linear time-invariant system
that is asymptotically stable. For a sinusoi-
dal input uj (t) = Aj cos

(
ωot +θj

)
:

lim
t→∞

yi (t) = Bi cos(ωot +φi )

Bie
jφi =

m∑
j=1

gij (jωo)Aje
jθj

1.7 State Space Equations for Composi-
te Systems

Cascade of two systems: Y (s) =
G2(s)G1(s)U (s) is realized by:

d
dt

[
x1(t)
x2(t)

]
=

[
A1 0
B2C1 A2

][
x1(t)
x2(t)

]
+
[

B1
B2D1

]
u(t)

y(t) = [ D2C1 C2 ]x(t) +D2D1u(t)

Parallel combination of two systems: Y (s) =
(G1(s) +G2(s))U (s) is realized by:

d
dt

[
x1(t)
x2(t)

]
=

[
A1 0
0 A2

][
x1(t)
x2(t)

]
+
[
B1
B2

]
u(t)

y(t) = [ C1 C2 ]x(t) + (D1 +D2)u(t)

2 Classical Methods
2.1 Feedback Control
Let L(s) be the (open) loop transfer func-
tion (return-ratio): L(s) = G(s)K(s)
Complementary Sensitivity:

T (s) =
L(s)

1 +L(s)

y = T r = −T n
r is the reference and n is the sensor noi-
se.
Sensitivity:

S(s) =
1

1 +L(s)

e = Sr, S =
dT /T
dG/G

, y = GSd

e is the error and d is the disturbance.
Trade-off between S and T :

S(s) + T (s) = 1

2.2 The Root-Locus Method
Root-locus diagram shows the locations
of the roots of 1 + kL(s) = 0 for k > 0.

L(s) =
n(s)
d(s)

=
c (s − z1) (s − z2) . . . (s − zm)
(s − p1) (s − p2) . . . (s − pn)

Rules for constructing the root-locus plot:

1. The root-locus diagram is symme-
tric with respect to the real axis
and consists of n branches.

2. For k = 0 the n branches start at
the open loop poles pi . As k →
∞,m branches tend to the zeros zi
and n−m branches tend to infinity.

3. Points on the real axis which lie to
the left of an odd number of poles
and zeros are on the root-locus.

4. The breakaway points are those
points on the root-locus for which
d
dsL(s) = 0( same as dk/ds = 0).

5. As k → ∞, the n − m branches
which tend to infinity do so along
straight line asymptotes at angles
(2`+1)π/(n−m) to the +ve real axis
(` = 0, . . . ,n −m − 1), and emanate
from the point:∑n

i=1 pi −
∑m
i=1 zi

n−m

The angle condition for s0 to be on the
root-locus:

∠L (s0) =
m∑
i=1

∠ (s0 − zi )−
n∑
i=1

L (s0 − pi )

= (2` + 1)π

At a point s0 on the root-locus:

k =
1

|L (s0)|
=

1
c

∏n
i=1 |s0 − pi |∏m
i=1 |s0 − zi |

2.3 The Routh-Hurwitz Criterion
The closed-loop characteristic equation
1 + G(s)K(s) = 0 has the same roots as
dG(s)dK (s) +nG(s)nK (s) = 0.
The Routh-Hurwitz criterion: Consider
the polynomial (assume a0 > 0 ):

a0s
n + a1s

n−1 + a2s
n−2 + · · ·+ an−1s+ an

All roots have negative real parts only if
ai > 0 for each i. A Routh array can be
constructed for arbitrary n.



3F2 Systems and Control
by Ziyi Z., Page 2 in 3

3 Observability and Observers
3.1 Observability
A system is called observable if we can de-
duce the state, x(t), from measurements
of u(τ) and y(τ) over some time interval
(t1, t2) with t1 < t < t2.
Consider differentiating y(t) to give:



y(t)
ẏ(t)
ÿ(t)
...

y(n−1)(t)


=


C
CA
CA2

...
CAn−1


x(t)

+


0
CBu(t)
CABu(t) +CBu̇(t)
...
CAn−2Bu + · · ·+CBu(n−2)


Defining the observability matrix:

Q =


C
CA
...

CAn−1


The Observability test: The system is ob-
servable if and only if rank Q = n.
If a system is not observable, there will
exist a vector xo , 0 for which Qxo = 0.
This is called an unobservable state.
Observability Gramian:

Wo (t1) =
∫ t1

0
eA

T tCT CeAtdt

Wo (t1) is a positive semi-definite ma-
trix. The system will be observable if
dTWo (t1)d > 0 for all d , 0, i.e. if Wo (t1)
is a positive definite matrix.∫ t1

0

∥∥∥∥y(t)− y
o
(t)

∥∥∥∥2
dt = dTWo (t1)d

3.2 Observers
Use a state observer (Luenberger Obser-
ver) whose state x̂(t), approaches x(t) as
t→∞: { ˙̂x = Ax̂+Bu +L(y − ŷ)

ŷ = Cx̂

Consider the error e(t) = x(t)− x̂(t):

ė = ẋ − ˙̂x = (A−LC)e

If the eigenvalues of (A − LC) are large
and negative, then e(A−LC)t → 0 quickly
as t increases. We can arbitrarily assign
the eigenvalues of (A− LC) by choice of
L if and only if the system is observable.
Consider random turbulence d(t) and
measurement with noise n(t){ ˙̂x = Ax(t) +Bd(t)

y(t) = Cx(t) +n(t)

Use the observer ˆ̇x(t) = Ax̂(t) + L[y(t) −
Cx̂(t)] for tracking disturbances and
ignoring noise:

1. If d large, n small: Believe the mea-
surements and use large L.

2. If d small, n large: Believe model
and use small L.

Sensor bias estimation: For sensor measu-
rement with bias y = θ̇ + bω, augment

state vector x =
[
θ, θ̇,bω

]T
and assume

bias is constant ḃω = 0.
Disturbance observer: Consider the aug-
mented state-space model: ḋ = 0

ẋ = Ax+B(u + d)
y = Cx

The observability matrix of the augmen-
ted model is:

Q̃ =
[

0 C
QB QA

]

rankQ̃ = rank
[
−CA−1B C

0 QA

]
= n+m

The internal model principle: A disturban-
ce modeled by d̈ +ω2

0d = 0 is observable
iff G (jω0) has rank m.
3.3 Observable and Unobservable Sub-

spaces
QR factorization: If the rankQ = r < n
then there exists a nonsingular n×n ma-
trix T and a n × r matrix Q̃1 of rank r,
such that Q =

[
Q̃1 0

]
T .

Change the state coordinates to x̃ = T x:{
˙̃x = TAT −1x̃+ T Bu = Ãx̃+ B̃u
y = CT −1x̃ = C̃x̃

In these coordinates if we partition the

state, x̃ =
[
x̃1
x̃2

]
with x̃1 of dimension r

and compatibly partition:

Ã =
[
Ã11 Ã12
Ã21 Ã22

]
; B̃ =

[
B̃1
B̃2

]
;

C̃ =
[
C̃1 C̃2

]
Then C̃2 = 0, Ã12 = 0, and

(
Ã11, C̃1

)
is

observable. In these state coordinates we
have ˙̃x1 = Ã11x1 + B̃1u, y = C̃1x1 and the
input/output response (i.e. the transfer
function) depends only on x̃1 and the
states x̃2 are all unobservable.

Subspace: Let T −1 = [XY ], Y in R
n×r is a

basis for null(Q), which is called O, the
unobservable subspace and X comple-
ments Y .
4 Controllability and State Feedback
4.1 Controllability
A state-space model is controllable if gi-
ven an initial state x0 and a final state xf ,
there exists an input signal u(·) that trans-
fers the state from x(0) = x0 to x(T ) = xf
in a finite time T > 0.
For discrete-time model: x[k+1] = Ax[k]+
Bu[k]

xf −A
nx0 =

[
B | . . . | An−1B

]
u[n− 1]

...
u[0]


Defining the controllability matrix:

P =
[
B | . . . | An−1B

]
A solution exists if the controllability ma-
trix P has full rank n.
Controllability Gramian:

Wc (t1) =
∫ t1

0
eAτBBT eA

T τdτ

If detWc (t1) , 0 then we can reach any
x (t1) from x(0) = 0 using u(t) = uo(t) =

BT eA
T (t1−t)Wc (t1)−1 x1.∫ t1

0
uo(t)T uo(t)dt = xT1Wc (t1)−1 x1

The inverse of the controllability Grami-
an defines the input energy required to
transfer the state from x0 = 0 to x1.

If Wc (t1) is a singular matrix there exists
z , 0 such that zTWc (t1)z = 0:∫ t1

0

(
zT eAτB

)(
BT eA

T τz
)
dτ = 0

Hence z is in Null space of P T = Null
space of Wc (t1). The null space of P T de-
fines the unreachable subspace.
The input, u(t) = uo(t) =

BT eA
T (t1−t)Wc (t1)−1 x1, takes the state

from x(0) = 0 to x (t1) = x1 with minimum
energy.
4.2 State Feedback Design
The system: x = Ax +Bu, with state feed-
back: u = −Kx +Mr, giving closed loop:

ẋ = (A−BK)x+BMr
The closed loop poles will be the eigen-
values of (A − BK) which can be placed
arbitrarily by choice of K if and only if
(A,B) is controllable.
In steady-state: ẋ = 0

y = Cx = C(−A+BK)−1BMr

ChooseM such thatC(−A+BK)−1BM = I
and y(t) → r after a step change with
speed given by eigenvalues of (A−BK).
Integral action: Augment the state by the
integral of the error ė = r−y = r−Cx with
state feedback:

u = −K1x −K2e

Choose K1,K2 to assign the closed-loop
poles (possible if augmented system con-
trollable) and then e(t)→ 0⇒ y(t)→ r
after a step change.
4.3 Subspaces and Minimal Realizati-

ons
(A,B) controllable iff

(
AT ,BT

)
observa-

ble. Hence any statement about obser-
vability can be turned into a statement
about controllability and vice-versa.
If rankQ = r < n, then there exists a de-

composition x̃ =
[
x̃1
x̃2

]
such that:

Ã =
[
Ã11 0
Ã21 Ã22

]
; C̃ =

[
C̃1 0

]
(
Ã11, C̃1

)
defines an observable subsys-

tem. The state x̃2 does not affect the out-
put and is unobservable.

If rank P = r < n, the corresponding de-
composition leads to:

Ã =
[
Ã11 Ã12

0 Ã22

]
; B̃ =

[
B̃1
0

]
The subsystem

(
Ã11, B̃1

)
is controllable.

The state x1 lives in the reachable sub-
space. The state x2 is uncontrollable and
its trajectory is not affected by the input.
Kalman decomposition:

x̃ = [ x̃1 x̃2 x̃3 x̃4 ]T

x̃1 and x̃2 are controllable while x̃2 and
x̃3 are observable.

ẋ =


A11 ? ? ?

0 A22 0 ?
0 A33 ?

0 A44

x
+ [ B1 B2 0 0 ]T u

y = [ 0 C2 0 C4 ]x

H(s) = C2 (sI −A22)−1B2 only depends
on the states that are both observable and
controllable.
A set of state equations given by
(A,B,C,D) is called a minimal realizati-
on of its transfer function, G(s) = D +
C(sI−A)−1B, if there does not exist a state
space realization of G(s) with a lower
state dimension. A realization is mini-
mal if and only if it is both controllable
and observable.{ ˙̃x2 = A22x̃2 +B2u

y = C2x̃2

For a single-input/single-output (SISO)
transfer function, non-minimal realizati-
on implies pole-zero cancellation.
5 Combined System Control
5.1 Observers with State Feedback
We can combine the observer and the
state feedback to control a system with
u = −Kx̂+Mr. Consider the error e = x−x̂:

ė = (A−LC)e

u = −K(x − e) +Mr

x = (A−BK)x+BKe+BMr

Hence the closed loop system:[
ẋ
ė

]
=

[
A−BK BK

0 A−LC
][

x
e

]
+
[
BM

0

]
r
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y = [ C 0 ]
[
x
e

]
Eigenvalues of

[
X Y
0 Z

]
= { eigenvalues

of X}∪{ eigenvalues of Z}. So closed-loop
poles are at the eigenvalues of (A − BK)
and those of (A−LC). e is not affected by
r so that e(t)→ 0.
5.2 The Linear Quadratic Regulator
Consider the system x(0) = xo and the
problem of choosing u to minimise∫∞
0 yT y +uT Rudt for some positive defi-

nite (weight) matrix R = RT > 0.
The Control Algebraic Ricatti Equation
(CARE):

XA+ATX +CT C −XBR−1BTX = 0

If the the system is controllable and ob-
servable, then the equation has a unique
positive definite solution X = XT > 0.
The minimizing control is the state feed-
back u = −Kx with K = R−1BTX.
The weight matrix R determines the rela-
tive penalty over the input and the out-
put energy.

1. Cheap control: choose R = rI and
let r→ 0

2. Minimum energy control: choose
R = rI and let r→∞.

R is often chosen diagonal. A different
scaling factor can be applied to different
actuators.
5.3 Kalman Filter

(The End)


