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1 Probability and Random Variables
1.1 Probability Space
The term random experiment is used to
describe any situation which has a set of
possible outcomes, each of which occurs
with a particular probability. To mathe-
matically describe a random experiment
we must specify:

1. The sample space Ω, which is the
set of all possible outcomes of the
random experiment. We call any
subset of A ⊆Ω an event.

2. A mapping/function P from
events to a number in the interval
[0,1], i.e. {P (A),A ⊂Ω}.

We call P the probability and (Ω, P ) the
probability space.
Axioms of probability: A probability P as-
signs each event E, E ⊂Ω, a number in
[0,1] and P must satisfy the following
properties:

1. P (Ω) = 1

2. For events A,B such that A∩B = ∅
(i.e. disjoint) then P (A∪B) = P (A)+
P (B).

3. If A1,A2, · · · are disjoint then
P (∪∞i=1Ai ) =

∑∞
i=1 P (Ai ).

Define the indicator function for a set or
event E,

IE(t) =
{

1, if t ∈ E
0, otherwise

When Ω is a discrete set {ω1,ω2, · · · }, gi-
ven any non-negative sequence of num-
bers p1,p2, · · · that add to 1, we can defi-
ne a valid probability:

P (A) =
∞∑
i=1

IA(ωi )pi

When Ω is the real line, probability can
be specified through a probability densi-
ty function (pdf) f (t). For a general event
E, we can calculate the probability using:

P (E) =
∫ ∞
−∞

IE(t)f (t)dt

1.2 Conditional Probability
The conditional probability of event A oc-
curring given that event B has occurred
is defined to be:

P (A|B) =
P (A∩B)
P (B)

Two events A and B are independent if
P (AB) = P (A∩B) = P (A)P (B).
Probability chain rule:

P (A1 · · ·An−1An)

= P (A1)

 n∏
i=2

P (Ai |A1 · · ·Ai−1)


Bayes’ theorem:

p(B|A) =
p(B,A)
p(A)

=
p(A|B)p(B)
p(A)

1.3 Random Variables
Given a probability space (Ω, P ), a ran-
dom variableis a function X(ω) which
maps each elementω of the sample space
Ω onto a point on the real line.
For a discrete random variable X with
range {x1,x2, · · · }, we define the probabili-
ty mass function(pmf) of X to be the func-
tion pX : {x1,x2, · · · } → [0,1] where:

pX (xi ) = Pr(X = xi )

For any set A:

Pr(X ∈ A) =
∞∑
i=1

IA(xi )pX (xi )

Continuous random variables are defi-
ned as having a probability density func-
tion (pdf.) A random variable X is conti-
nuous if there exists a non-negative func-
tion fX (x) ≥ 0 such that

∫∞
−∞ fX (x)dx = 1

and for any set A:

Pr(X ∈ A) =
∫ ∞
−∞

IA(x)fX (x)dx

The cumulative distribution function (cdf)
can describe both discrete and conti-
nuous random variables and is defined
to be:

FX (x) = Pr(X ≤ x)
The cdf has the following properties:

1. 0 ≤ FX (x) ≤ 1.

2. FX (x) is non-decreasing as x incre-
ases.

3. Pr(x1 < X ≤ x2) = FX (x2)−FX (x1)

4. limx→−∞FX (x) = 0 and
limx→∞FX (x) = 1

5. If X is a continuous r.v. then FX (x)
is continuous.

6. If X is discrete then FX is right-
continuous: FX (x) = limt↓x F(t) for
all x.

For a random variable Y = r(X) where
r is strictly increasing or strictly decre-
asing, r has an inverse r−1 = s, we can
derive a formula for fY :

fY (y) = fX (s(y))
∣∣∣∣∣ds(y)
dy

∣∣∣∣∣
1.4 Bivariates
A bivariate are two jointly distributed
random variables. For two discrete ran-
dom variables X and Y where X ∈
{x1, · · · ,xm}, Y ∈ {y1, · · · , yn}, we can de-
fine the joint pmf to be:

pX,Y (xi , yj ) = Pr(X = xi ,Y = yj )

The marginal pmfs are pX (xk) =∑
j pX,y (xk , yj ) and pY (yk) =∑
i pX,y (xi , yk)

Two discrete random variables X and
Y are independent if pX,Y (x,y) =
pX (x)pY (y) for all (x,y).
For the discrete rvs X and Y , the condi-
tional pmf of X given Y = y is:

pX |Y (x|y) =
pX,Y (x,y)
pY (y)

For continuous random variables X and
Y , we call a non-negative function f (x,y)
their joint probability density function
if

∫∞
−∞

(∫∞
−∞ f (x,y)dx

)
dy = 1 and for any

sets (events) A ∈ R and B ∈ R:

Pr(X ∈ A,Y ∈ B) =∫ ∞
−∞

IB(y)
(∫ ∞
−∞

IA(x)f (x,y)dx
)
dy

Two continuous rvs X and Y are indepen-
dentif and only if fX,Y (x,y) = fX (x)fY (y).
For the continuous rvs X and Y , the con-
ditional pdf of X given Y = y is:

fX |Y (x|y) =
fX,Y (x,y)
fY (y)

The pdf of the sum of two independent
rvs is the convolution of their pdfs. Let
X1 and X2 be two independent rvs and
Y = X1 +X2.

fY (y) =
∫ ∞
−∞

f2(y − x1)f1(x1)

The expected value or mean value or first
moment of a function r(X,Y ) of the biva-
riate (X,Y ) is:

E{r(X,Y )} ={∑
y
∑
x r(x,y)pX,Y (x,y), disc.∫∞

−∞
∫∞
−∞ r(x,y)fX,Y (x,y)dxdy, cts.

The conditional expectation is:

E{r(X,Y )|Y = y} ={∑
x r(x,y)pX |Y (x|y), disc.∫∞
−∞ r(x,y)fX |Y (x|y)dx, cts.

Rule of iterated expectation:

E{r(X,Y )} = E (E{r(X,Y )|Y })

1.5 Multivariates
LetX1,X2, · · · ,Xn be n continuous (or dis-
crete) random variables. We call X =
(X1, · · · ,Xn) ∈ R

n a continuous (or dis-
crete) random vector.
Let f (x1, · · · ,xn) be a non-negative func-
tion that integrates to 1. Then f is called
the pdf of the random vector X if for all
events A1, · · · ,An:

Pr(X1 ∈ A1, · · · ,Xn ∈ An) =∫ ∞
−∞

IAn (xn) · · ·
∫ ∞
−∞

IA1 (x1)f (x1, · · · ,xn)

dx1 · · ·dxn

The ith marginal of f (x1, · · · ,xn) is obtai-
ned by:

fXi (xi ) =∫ ∞
−∞
· · ·

∫ ∞
−∞

f (x1, · · · ,xn)

dx1 · · ·dxi−1dxi+1 · · ·dxn

The n random variables X1, · · · ,Xn are
independent if and only if for every
A1, · · · ,An:

Pr(X1 ∈ A1, · · · ,Xn ∈ An) =

Pr(X1 ∈ A1) · · ·Pr(Xn ∈ An)

Independence is equivalent to checking
that the joint pdf reduces to the product
of marginals:

f (x1, · · · ,xn) = fX1 (x1) · · ·fXn (xn)

Independence: If X1, · · · ,Xn are indepen-
dent random variables then E{

∏n
i=1Xi } =∏n

i=1E{Xi }, i.e. the expectation of the
product is the product of the expecta-
tion.
Linearity: If X1, · · · ,Xn are random varia-
bles and if a1, · · · , an are real constants
then E{

∑
i = 1naiXi } =

∑n
i=1 aiE{Xi }

The change of variable formula can be
applied to random vectors. Let Y = G(X):

Y1
...
Yn

 =


g1(X1, · · · ,Xn)

...
gn(X1, · · · ,Xn)


If G is invertible then X = G−1(Y ). Let
H(Y ) = G−1(Y ):

X1
...
Xn

 =


h1(Y1, · · · ,Yn)

...
hn(Y1, · · · ,Yn)


The matrix of partial derivatives of H(y)
forms the Jacobian:

J(y) =


∂
∂y1

h1 · · · ∂∂yn h1

...
∂
∂y1

hn · · · ∂∂yn hn


fY (y) = fX (H(y))

∣∣∣detJ(y)
∣∣∣

The characteristic function of a (discrete
or continuous) random variable X is
ϕX (t) = E{exp(itX)}, t ∈R. For a random
vector X = (X1,X2, · · · ,Xn), the characte-
ristic function is ϕX (t) = E{exp(itTX)},
t ∈ R

n. Similarly to the Fourier trans-
form, the characteristic function unique-
ly describes a pdf. Suppose that X and
Y are random vectors with ϕX (t) = ϕY (t)
for all t ∈ Rn, then X and Y have the sa-
me probability distribution.

inE(Xn) =
dn

dtn
ϕX (t = 0)
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2 Random Processes
2.1 Random Process
A discrete time random (or stochastic) pro-
cess is one of the following infinite col-
lection of random variables: {Xn}∞n=−∞ or
{Xn}∞n=0 or {Xn}∞n=1 Random walk:

Xn =
{
Xn−1 + 1, w.p. q
Xn−1 − 1, w.p. 1− q

X0 = 0

2.2 Finite Dimensional Distributions
To completely specify a discrete time ran-
dom process X0,X1, · · · , we must specify
their joint probability density function
fX0,X1,··· ,Xn (x0,x1, · · · ,xn) for all integers
n ≥ 0 when X0,X1, · · · is a collection of
continuous random variables.
If X0,X1, · · · is a collection of discrete
random variables then we must spe-
cify their joint probability mass function
pX0,X1,··· ,Xn (x0,x1, · · · ,xn) for all integers
n ≥ 0.
Markov chain: Let {Xn}n≥0 be discrete
random variables taking values in S =
{1, · · · ,L}. The transition probability ma-
trix Q is a non-negative matrix and each
row sums to one.

Q =


Q1,1 Q1,2 · · · Q1,L
Q2,1 Q2,2 · · · Q2,L
...

...
. . .

...
QL,1 QL,2 · · · QL,L


The conditional pmf of Xn given X0 =
i0, · · · ,Xn−1 = in−1 is determined by Q:

Pr(Xn = in|X0 = i0, · · · ,Xn−1 = in−1)
=Qin−1,in

Assume the pmf of X0 is pX0 (i) = λi
where λ = (λ1, · · · ,λL) is given. The pair
(λ,Q) completely defines the Markov
chain. We call Q the transition probabi-
lity matrix of the MC and λ the initial
distribution of the chain. Only the most
recent value Xn−1 = in−1 is needed to ge-
nerate Xn. This limited memory property
is known as the Markov property.
Marginals of a Markov chain:

p(in) = (λQn)in

A discrete time random process
X0,X1, · · · is strictly stationary if for

all (section size) k and displacement
m > 0:

fX0,··· ,Xk (x0, · · · ,xk)

= fXm,··· ,Xk+m (xm, · · · ,xk+m)

Strict stationarity means any two ’sec-
tions’ of the process (X0, · · · ,Xk) and
(Xm, · · · ,Xm+k) are statistically indistin-
guishable for any displacement m.
Invariant distribution of a Markov chain:
Consider the transition probability ma-
trix Q with state-space S. The pmf π =
(πi : i ∈ S) is invariant for Q if πQ = π
for all j ∈ S: ∑

i∈S
πiQi,j = πj

The Markov chain (π,Q) is strictly statio-
nary. The pmf of (Xm, · · · ,Xm+k), for any
m ∈ {0,1, · · · }, can be written as:

p(im, · · · , im+k) =
πimQim,im+1 · · ·Qim+k−1,im+k

Ergodic theorem: When the MC is irredu-
cible then for any initial distribution λ,
the sample (or empirical) average conver-
ges to the ensemble average:

1
n+ 1

n∑
k=0

r(Xk)→
∑
i∈S

πir(i)

An irreducible Markov chain refers to a
chain where all state values in S commu-
nicate with each other. This means for
any pair of states (i, j), the Markov chain
starting in i will eventually visit j and
vice versa.
2.3 Time-Series Analysis
A time series is a set of observations yn,
n = 0,1, · · · , arranged in increasing time.
White noise: Let {Wn}∞n=−∞ be a sequence
of random variables such that E(Wn) = 0
for all n,

E(WiWj ) =
{
σ2, for i = j
0, for i , j

Auto-regressive (AR) process: The AR(p)
process {Xn}∞n=−∞ of the order p is:

Xn =

 p∑
i=1

aiXn−i

+Wn

For the AR(1) case:

Xn = aXn−1 +Wn =
∞∑
k=0

Wn−ka
k

AR(1) is causal with impulse response
{ak}k≥0.

E{Xn} =
∞∑
k=0

E

{
Wn−ka

k
}

= 0

E{X2
n } =

∞∑
k=0

E

{
W 2
n−ka

2k
}

=
σ2

1− a2

Wide sense stationary (WSS): {Xn}∞n=−∞ is
wide-sense stationary if:

1. E{Xn} = µ for all n (has constant
mean)

2. E{X2
n } <∞ for all n (has finite va-

riance)

3. E{Xn1Xn2 } = E{Xn1+kXn2+k} for
any n1,n2, k.

The correlation function of a WSS pro-
cess is defined as RX (k) = E{X0Xk}. The
AR(1) process is WSS and RX (k) = akσ2

X .
Moving average (MA) process: The MA(q)
process {Xn}∞n=−∞ of the order q is:

Xn =
q∑
i=1

biWn−i +Wn

E{X2
n } =

q∑
i=0

b2
i E

{
W 2
n−i

}
+E

{
W 2
n

}
= σ2(1 + b2

1 + · · ·+ b2
q )

If the input {Wn}∞n=−∞ of a discrete ti-
me LTI system with impulse respon-
se {hn}∞n=−∞ is WSS then its output
{Yn}∞n=−∞ is also WSS.

E{Yn} = E

 ∞∑
k=−∞

hn−kWk


= E{W0}

∞∑
k=−∞

hn−k

The correlation of the output is

E{Yn1Yn2 }

= E

 ∞∑
l=−∞

∞∑
k=−∞

hkhlWn1−kWn2−l


=
∞∑

l=−∞

∞∑
k=−∞

hkhlRW (n2 −n1 + k − l)

Thus the MA process is WSS.
2.4 Power Spectrum
Let RX (k) be the correlation function of
a discrete time WSS process. The power
spectrum density SX (f ) is:

SX (f ) =
∞∑

k=−∞
RX (k)e−j2πf k

The inversion formula is:

RX (n) =
∫ 1/2

−1/2
SX (f )ej2πf ndf

Power spectrum shows how the varian-
ce of Xn is spread across frequency. If
RX (k) is the correlation function of a dis-
crete time WSS process then the power
spectrum density SX (f ) is an even, re-
al valued and nonnegative function of f .
Moreover, SX (f ) is a continuous function
if

∑∞
k=−∞ |RX (k)| <∞

The area under SX (f ) in the frequency
band gives the power of the bandlimited
output Yn.
The ARMA model:The ARMA(p,q) pro-
cess {Xn}∞n=−∞ is the discrete time pro-
cess satisfying:

Xn =
p∑
i=1

aiXn−i +Wn +
q∑
i=1

biWn−i

The ARMA process is WSS and it can
be expressed as a causal filter applied to
{Wn}∞n=−∞.
For a random process {Xn} , the expected
instantaneous power is E

{
X2
n

}
while the

expected average power is:

lim
N→∞

1
2N + 1

N∑
n=−N

E

{
X2
n

}
If the process is WSS, then E

{
X2
n

}
=

RX (0) for all n.

RX (0) =
∫ 1/2

−1/2
SX (f )df

The area under the (non-negative) func-
tion SX (f ) gives the total power of the
WSS process {Xn}∞n=−∞
The area under SX (f ) in the frequency
band gives the power of the bandlimited
output Yn.

RY (0) =
∫ −f1
−f2

SX (f )df +
∫ f2

f1
SX (f )df

= 2
∫ f2

f1
SX (f )df

3 Detection, Estimation and Inference
3.1 Discrete-time Random Processes
We define a discrete-time random pro-
cess as an ensemble of functions of ω
which is a random variable having a pro-
bability density function f (ω).

{Xn(ω)} ,n = −∞, · · · ,−1,0,1, · · · ,∞

The mean of a random process {Xn} is
defined as E[Xn] and the autocorrelation
function as:

rXX [n,m] = E[XnXm]

The cross-correlation function between
two processes {Xn} and {Yn} is:

rXY [n,m] = E[XnYm]

A stationary process has the same stati-
stical characteristics irrespective of shifts
along the time axis.
For a wide-sense stationary random pro-
cess {Xn}, the power spectrum is defined
as the discrete-time Fourier transform
(DTFT) of the discrete autocorrelation
function:

SX
(
ejΩ

)
=

∞∑
m=−∞

rXX [m]e−jmΩ

The normalised frequency is Ω = ωT
where T is the sampling interval of the
discrete time process and ω is the samp-
ling frequency. The power spectrum can
be interpreted as a density spectrum in
the sense that the mean-squared signal
value at the output of an ideal band-pass
filter with lower and upper cut-off fre-
quencies of ωl and ωu is given by:

E
[
Y 2
n

]
=

1
π

∫ ωuT

ωlT
SX

(
ejΩ

)
dΩ

White noise is defined in terms of its
auto-covariance function. A wide sense
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stationary process is termed white noise
if:

cXX [m] = E[(Xn −µ)(Xn+m −µ)]

= σ2
Xδ[m]

σ2
X = E

[
(Xn −µ)2

]
is the variance of the

process. The power spectrum of zero
mean white noise is σ2

X .
The N -th order pdf for the Gaussian whi-
te noise process is:

fXn1 ,Xn2 ,··· ,XnN (α1,α2, · · · ,αN )

=
N∏
i=1

N
(
αi |0,σ2

X

)
The Gaussian white noise process is
Strict sense stationary.
When a wide-sense stationary discrete
random process {Xn} is passed through a
stable, linear time invariant (LTI) system
with digital impulse response {hn}, the
output process {Yn} is also WSS.

yn =
∞∑

k=−∞
hkxn−k = xn ? hn

The output correlation functions and
power spectra can be expressed in terms
of the input statistics and the LTI system:

rXY [k] =
∞∑

l=−∞
hlrXX [k − l] = hk ∗ rXX [k]

rYY [l] =
∞∑

k=−∞

∞∑
i=−∞

hkhirXX [l + i − k]

= hl ∗ h−l ∗ rXX [l]

SY
(
ejωT

)
=

∣∣∣∣H (
ejωT

)∣∣∣∣2 SX (
ejωT

)
For an Ergodic random process we can
estimate expectations by performing
time-averaging on a single sample func-
tion:

µ = E [Xn] = lim
N→∞

1
N

N−1∑
n=0

xn

rXX [k] = lim
N→∞

1
N

N−1∑
n=0

xnxn+k

A necessary and sufficient condition for
mean ergodicity is given by:

lim
N→∞

1
N

N−1∑
n=0

cXX [k] = 0

3.2 Optimal Filtering Theory
Wiener filter is a linear filter which
would optimally estimate dn given just
the noisy observations xn and some ass-
umptions about the statistics of the ran-
dom signal and noise processes.

xn = dn + vn

In general, we can filter the observed si-
gnal xn with an infinite dimensional fil-
ter, having a non-causal impulse respon-
se hp, to obtain an estimate d̂n of the de-
sired signal:

d̂n =
∞∑

p=−∞
hpxn−p

We can measure performance of the filter
in terms of expectations using the mean-
squared error (MSE) criterion:

εn = dn − d̂n = dn −
∞∑

p=−∞
hpxn−p

J = E

[
ε2
n

]
The Wiener filter assumes that {xn} and
{dn} are jointly wide-sense stationary
while {dn} and {vn} have zero mean.
The expected error may be minimised
with respect to the impulse response va-
lues hq:

∂J
∂hq

= E

[
∂ε2
n

∂hq

]
= E

[
2εn

∂εn
∂hq

]
= 0

The orthogonality principle:

E[εnxn−q] = rxd [q]−
∞∑

p=−∞
hprxx[q−p] = 0

The Wiener-Hopf equations:

∞∑
p=−∞

hprxx[q − p] = hq ∗ rxx[q] = rxd [q]

The cross-power spectrum of d and x is:

Sxd
(
ejΩ

)
=H

(
ejΩ

)
Sx

(
ejΩ

)
The cross-power spectrum is in general
complex valued and measures the cohe-
rence between two process at a particular
frequency.
Frequency domain Wiener filter:

H
(
ejΩ

)
=
Sxd

(
ejΩ

)
Sx

(
ejΩ

)
The minimum mean-squared error value
of the optimal filter:

Jmin = E [εndn] = rdd [0]−
∞∑

p=−∞
hprxd [p]

The minimum error in frequency do-
main:

1
2π

∫ +π

−π
Sd

(
ejΩ

)
−H

(
ejΩ

)
S∗xd

(
ejΩ

)
dΩ

When the desired signal process dn is un-
correlated with the noise process vn:

rdv [k] = E [dnvn+k] = 0

rxd [q] = rdd [q]

rxx[q] = rdd [q] + rvv[q]
Thus the Wiener filter becomes:

H
(
ejΩ

)
=

Sd
(
ejΩ

)
Sd

(
ejΩ

)
+ Sv

(
ejΩ

)
=

1
1 + 1/ρ(Ω)

ρ(Ω) = Sd
(
ejΩ

)
/Sv

(
ejΩ

)
is the (fre-

quency dependent) signal-to-noise (SNR)
power ratio. At those frequencies where
the SNR is large, the gain of the filter
tends to unity; whereas the gain tends to
a small value at those frequencies where
the SNR is small. The minimum expected
error in this case reduces, in the frequen-
cy domain to:

Jmin =
1

2π

∫ +π

−π
Sd

(
ejΩ

)( 1
1 + ρ(Ω)

)
dΩ

In general, the Wiener filter is non-
causal, and hence physically unrealisable.
In the a causal P -th order Finite Impulse

Response (FIR) Wiener filter, the signal
estimate is formed as:

d̂n =
P∑
p=0

hpxn−p

The filter derivation proceeds much as
before, leading to Wiener-Hopf equati-
ons as follows:

P∑
p=−0

hprxx[q − p] = rxd [q]

The equations may be written in matrix
form as Rxh = rxd :

Rx


h0
...
hP

 =


rxd [0]
...

rxd [P ]


The correlation matrix Rx is given by:

Rx =


rxx[0] · · · rxx[P ]
...

. . .
...

rxx[P ] · · · rxx[0]


The correlation matrix is symmetric and
has constant diagonals (a symmetric To-
eplitz matrix) since rxx[k] = rxx[−k]. The
coefficient vector of the FIR Wiener filter:

h = R−1
x rxd

The minimum mean-squared error is gi-
ven by:

Jmin = rdd [0]− rTxdh = rdd [0]− rTxdR
−1
x rxd

3.3 Optimal Detection
The matched filter detects a known deter-
ministic signal sn buried in random noise
vn.

xn = sn + vn
The output of an FIR filter at time N − 1
is:

yN−1 =
N−1∑
m=0

hmxN−1 = hT x̃

= hT s̃+ hT ṽ = ysN−1 + ynN−1

x̃ = [xN−1,xN−2, · · · ,x0]T is the time-
reversed vector and s̃ is defined similarly.
Define the signal-to-noise ratio (SNR) at
the output of the filter as:

E

[
|ysN−1|

2
]

E

[
|ynN−1|2

] =
|hT s̃|2

E

[
|hT ṽ|2

]

We can represent the filter coefficient vec-
tor h as a linear combination of the eigen-
vectors of s̃s̃T :

h = αe0 + βe1 +γe2 + · · ·

The unit length vector e0 = s̃/ |s̃| is an ei-
genvector and α = (s̃T s̃) is the correspon-
ding eigenvalue. The set of N − 1 ortho-
normal vectors e1, e2, · · · are orthogonal
to s̃ with eigenvalue β = γ = · · · = 0. The
SNR may be expressed as:

∣∣∣hT s̃∣∣∣2
E

[
|hT ṽ|2

] =
α2s̃T s̃

σ2
v

(
α2 + β2 +γ2 + · · ·

)

The largest possible value of α given that
|h| = 1 corresponds to α = 1.

hopt = e0 =
s̃
|s̃|

The optimal filter coefficients are just the
(normalised) time-reversed signal. The
maximum SNR at the optimal filter set-
ting is given by:

SNRopt =
s̃T s̃

σ2
v
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3.4 Estimation Theory and Inference
In estimation theory, we start off with a
vector of signal measurements x and so-
me unknown quantities, or parameters,
θ that we wish to infer. The probability
distribution of data x can be expressed
in terms of a joint probability density
function (or probability mass function
if the data are discrete-valued), or like-
lihood function:

p(x|θ)

The prior probability density function
can be formulated for θ from physical
or other modelling considerations:

p(θ)

In the Linear Model it is assumed that
the data x are generated as a linear func-
tion of the parameters θ with an additive
random modelling error term e.

x = Gθ + e

G is the design matrix.
Einstein-Wiener-Khinchin Theorem: Take
a time-windowed version of the signal
xn, having duration 2N + 1 samples and
zero elsewhere:

xNn = wNn xn

wNn =
{

1, −N ≤ n ≤N
0, otherwise

We have the following DTFT relation-
ship:

DTFT {rxx[m]t[m]} =

E

[ 1
2N + 1

|XN
(
ejΩ

)
|2
]

t[m] is the deterministic autocorrelation
function of the window function wn. In
the limit we can prove that the power
spectrum is proportional to the expected
value of the DTFT-squared of the data.

Sx
(
ejΩ

)
= lim
N→∞

E

[ 1
2N + 1

|XN
(
ejΩ

)
|2
]

An estimator is termed unbiased if E[µ̂] =
µ. An estimator is termed consistent if it
is unbiased and its variance tends to zero
as N →∞.
The ‘best fit’ model that matches the da-
ta can be found by minimising the error

J = eT e. For invertible GTG, the classical
Ordinary Least Squares (OLS) estimator
of θ is:

θOLS =
(
GTG

)−1
GT x

E

[
θOLS

]
=

(
GTG

)−1
GTGθ = θ

The OLS estimator is the minimum va-
riance unbiased estimator of θ. Such an
estimator is termed a Best Linear Unbia-
sed Estimator (BLUE).
The Maximum Likelihood (ML) estimate
for θ is the value of θ which maximises
the likelihood for given observations x:

θML = argmax
θ

{p(x|θ)}

The ML solution is identical to the OLS
solution for the linear Gaussian model.
The noise variance is the just mean-
squared error at the ML parameter so-
lution.

σ2
e
ML

= JML/N
The posterior or a posteriori probability
for the parameter is given by Bayes’ Theo-
rem:

p(θ|x) =
p(x|θ)p(θ)
p(x)

∝ p(x|θ)p(θ)

The denominator p(x), referred to as the
marginal likelihood, is constant for any
given observation x.

p(x) =
∫
p(x|θ)p(θ)dx

The maximum a posteriori (MAP) esti-
mate is the value of θ which maximises
the posterior distribution:

θMAP = argmax
θ

{p(θ|x)}

Suppose that the prior on parameter vec-
tor θ is the multivariate Gaussian p(θ) =
N (mθ ,Cθ). The MAP estimator for Line-
ar Gaussian model is then given by:

θMAP = Φ−1Θ =(
GTG+ σ2

e C
−1
θ

)−1 (
GT x+ σ2

e C
−1
θ mθ

)
The posterior distribution is itself a mul-
tivariate Gaussian:

p(θ|x) =N
(
θMAP,σ2

e Φ
−1

)

We can write the expected cost over all
of the unknown parameters, conditional
upon the observed data x:

E

[
C(θ̂,θ)

]
=

∫
C(θ̂,θ)p(θ|x)dθ

A classic estimation technique related to
the Wiener filtering objective function is
the Minimum mean-squared error (MM-
SE) estimation method.

θMMSE = argmin
θ̂

E

[
(θ̂ −θ)2

]
= E [θ|x] =

∫
θp(θ|x)dθ

The MMSE estimator for the Linear Gaus-
sian model is identical to the MAP solu-
tion.

(The End)


