1 Probability and Random Variables

1.1 Probability Space

The term random experiment is used to describe any situation which has a set of possible outcomes, each of which occurs with a particular probability. To mathematically describe a random experiment we must specify:

1. The sample space Ω, which is the set of all possible outcomes of the random experiment. We call any subset of $A \subseteq \Omega$ an event
2. A mapping/function P from events to a number in the interval $[0,1]$, i.e. $\{P(A), A \subset \Omega\}$.

We call P the probability and (Ω, P) the probability space.
Axioms of probability: A probability P assigns each event $E, E \subset \Omega$, a number in $[0,1]$ and P must satisfy the following properties:

1. $P(\Omega)=1$
2. For events A, B such that $A \cap B=\emptyset$ (i.e. disjoint) then $P(A \cup B)=P(A)+$ $P(B)$.
3. If A_{1}, A_{2}, \cdots are disjoint then $P\left(\cup_{i=1}^{\infty} A_{i}\right)=\sum_{i=1}^{\infty} P\left(A_{i}\right)$.

Define the indicator function for a set or event E,

$$
\mathbb{I}_{E}(t)= \begin{cases}1, & \text { if } t \in E \\ 0, & \text { otherwise }\end{cases}
$$

When Ω is a discrete set $\left\{\omega_{1}, \omega_{2}, \cdots\right\}$, gi ven any non-negative sequence of numbers p_{1}, p_{2}, \cdots that add to 1 , we can defi ne a valid probability:

$$
P(A)=\sum_{i=1}^{\infty} \mathbb{I}_{A}\left(\omega_{i}\right) p_{i}
$$

When Ω is the real line, probability can be specified through a probability densi ty function (pdf) $f(t)$. For a general event E, we can calculate the probability using:
$P(E)=\int_{-\infty}^{\infty} \mathbb{I}_{E}(t) f(t) d t$
1.2 Conditional Probability

The conditional probability of event A occurring given that event B has occurred is defined to be:

$$
P(A \mid B)=\frac{P(A \cap B)}{P(B)}
$$

Two events A and B are independent if $P(A B)=P(A \cap B)=P(A) P(B)$.
Probability chain rule:

$$
\begin{aligned}
P\left(A_{1}\right. & \left.\cdots A_{n-1} A_{n}\right) \\
& =P\left(A_{1}\right)\left(\prod_{i=2}^{n} P\left(A_{i} \mid A_{1} \cdots A_{i-1}\right)\right)
\end{aligned}
$$

Bayes' theorem:

$$
p(B \mid A)=\frac{p(B, A)}{p(A)}=\frac{p(A \mid B) p(B)}{p(A)}
$$

1.3 Random Variables

Given a probability space (Ω, P), a random variableis a function $X(\omega)$, which maps each element ω of the sample space Ω onto a point on the real line.
For a discrete random variable X with range $\left\{x_{1}, x_{2}, \cdots\right\}$, we define the probability mass function(pmf) of X to be the function $p_{X}:\{x 1, x 2, \cdots\} \rightarrow[0,1]$ where:

$$
p_{X}\left(x_{i}\right)=\operatorname{Pr}\left(X=x_{i}\right)
$$

For any set A :

$$
\operatorname{Pr}(X \in A)=\sum_{i=1}^{\infty} \mathbb{I}_{A}\left(x_{i}\right) p_{X}\left(x_{i}\right)
$$

Continuous random variables are defined as having a probability density function (pdf.) A random variable X is continuous if there exists a non-negative function $f_{X}(x) \geq 0$ such that $\int_{-\infty}^{\infty} f_{X}(x) d x=1$ and for any set A :

$$
\operatorname{Pr}(X \in A)=\int_{-\infty}^{\infty} \mathbb{I}_{A}(x) f_{X}(x) d x
$$

The cumulative distribution function (cdf) can describe both discrete and continuous random variables and is defined to be:

$$
F_{X}(x)=\operatorname{Pr}(X \leq x)
$$

The cdf has the following properties:

1. $0 \leq F_{X}(x) \leq 1$.
2. $F_{X}(x)$ is non-decreasing as x incre ases.
3. $\operatorname{Pr}\left(x_{1}<X \leq x_{2}\right)=F_{X}\left(x_{2}\right)-F_{X}\left(x_{1}\right)$
4. $\lim _{x \rightarrow-\infty} F_{X}(x)=0$ and $\lim _{x \rightarrow \infty} F_{X}(x)=1$
5. If X is a continuous r.v. then $F_{X}(x)$ is continuous
6. If X is discrete then F_{X} is rightcontinuous: $F_{X}(x)=\lim _{t \downarrow x} F(t)$ for all x.

For a random variable $Y=r(X)$ where r is strictly increasing or strictly decreasing, r has an inverse $r^{-1}=s$, we can derive a formula for f_{Y} :

$$
f_{Y}(y)=f_{X}(s(y))\left|\frac{d s(y)}{d y}\right|
$$

1.4 Bivariates

A bivariate are two jointly distributed random variables. For two discrete ran dom variables X and Y where $X \in$ $\left\{x_{1}, \cdots, x_{m}\right\}, Y \in\left\{y_{1}, \cdots, y_{n}\right\}$, we can define the joint pmf to be:

$$
p_{X, Y}\left(x_{i}, y_{j}\right)=\operatorname{Pr}\left(X=x_{i}, Y=y_{j}\right)
$$

The marginal pmfs are $p_{X}\left(x_{k}\right)=$ $\sum_{j} p_{X, y}\left(x_{k}, y_{j}\right)$ and $p_{Y}\left(y_{k}\right)=$ $\sum_{i} p_{X, y}\left(x_{i}, y_{k}\right)$
Two discrete random variables X and Y are independent if $p_{X, Y}(x, y)=$ $p_{X}(x) p_{Y}(y)$ for all (x, y).
For the discrete rvs X and Y, the conditional pmf of X given $Y=y$ is:

$$
p_{X \mid Y}(x \mid y)=\frac{p_{X, Y}(x, y)}{p_{Y}(y)}
$$

For continuous random variables X and Y, we call a non-negative function $f(x, y$ their joint probability density function if $\int_{-\infty}^{\infty}\left(\int_{-\infty}^{\infty} f(x, y) d x\right) d y=1$ and for any sets (events) $A \in R$ and $B \in R$:

$\operatorname{Pr}(X \in A, Y \in B)=$

$$
\int_{-\infty}^{\infty} \mathbb{I}_{B}(y)\left(\int_{-\infty}^{\infty} \mathbb{I}_{A}(x) f(x, y) d x\right) d y
$$

Two continuous rvs X and Y are independentif and only if $f_{X, Y}(x, y)=f_{X}(x) f_{Y}(y)$ For the continuous rvs X and Y, the con ditional pdf of X given $Y=y$ is:

$$
f_{X \mid Y}(x \mid y)=\frac{f_{X, Y}(x, y)}{f_{Y}(y)}
$$

The pdf of the sum of two independent X_{1} is convolution of their pdfs. Let $Y=X_{1}+X_{2}$

$$
f_{Y}(y)=\int_{-\infty}^{\infty} f_{2}\left(y-x_{1}\right) f_{1}\left(x_{1}\right)
$$

The expected value or mean value or first moment of a function $r(X, Y)$ of the bivariate (X, Y) is:
$\mathbb{E}\{r(X, Y)\}=$
$\begin{cases}\sum_{y} \sum_{x} r(x, y) p_{X, Y}(x, y), & \text { disc. } \\ \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} r(x, y) f_{X, Y}(x, y) d x d y, & \text { cts. }\end{cases}$

The conditional expectation is:
$\mathbb{E}\{r(X, Y) \mid Y=y\}=$

$$
\begin{cases}\sum_{x} r(x, y) p_{X \mid Y}(x \mid y), & \text { disc. } \\ \int_{-\infty}^{\infty} r(x, y) f_{X \mid Y}(x \mid y) d x, & \text { cts. }\end{cases}
$$

Rule of iterated expectation:

$$
\mathbb{E}\{r(X, Y)\}=\mathbb{E}(\mathbb{E}\{r(X, Y) \mid Y\})
$$

1.5 Multivariates

Let $X_{1}, X_{2}, \cdots, X_{n}$ be n continuous (or discrete) random variables. We call $X=$ $\left(X_{1}, \cdots, X_{n}\right) \in \mathbb{R}^{n}$ a continuous (or discrete) random vector.
Let $f\left(x_{1}, \cdots, x_{n}\right)$ be a non-negative function that integrates to 1 . Then f is called the pdf of the random vector X if for all events A_{1}, \cdots, A_{n}.
$\operatorname{Pr}\left(X_{1} \in A_{1}, \cdots, X_{n} \in A_{n}\right)=$
$\int_{-\infty}^{\infty} \mathbb{I}_{A_{n}}\left(x_{n}\right) \cdots \int_{-\infty}^{\infty} \mathbb{I}_{A_{1}}\left(x_{1}\right) f\left(x_{1}, \cdots, x_{n}\right)$
$d x_{1} \cdots d x_{n}$
The i th marginal of $f\left(x_{1}, \cdots, x_{n}\right)$ is obtained by:

$$
\begin{aligned}
& f_{X_{i}}\left(x_{i}\right)= \\
& \qquad \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} f\left(x_{1}, \cdots, x_{n}\right) \\
& \quad d x_{1} \cdots d x_{i-1} d x_{i+1} \cdots d x_{n}
\end{aligned}
$$

The n random variables X_{1}, \cdots, X_{n} are independent if and only if for every $A_{1}, \cdots, A_{n}:$
$\operatorname{Pr}\left(X_{1} \in A_{1}, \cdots, X_{n} \in A_{n}\right)=$
$\operatorname{Pr}\left(X_{1} \in A_{1}\right) \cdots \operatorname{Pr}\left(X_{n} \in A_{n}\right)$

Independence is equivalent to checking
that the joint pdf reduces to the product of marginals:

$$
f\left(x_{1}, \cdots, x_{n}\right)=f_{X_{1}}\left(x_{1}\right) \cdots f_{X_{n}}\left(x_{n}\right)
$$

Independence: If X_{1}, \cdots, X_{n} are independent random variables then $\mathbb{E}\left\{\prod_{i=1}^{n} X_{i}\right\}=$ $\prod_{i=1}^{n} \mathbb{E}\left\{X_{i}\right\}$, i.e. the expectation of the product is the product of the expectation.
Linearity: If X_{1}, \cdots, X_{n} are random variables and if a_{1}, \cdots, a_{n} are real constants then $\mathbb{E}\left\{\sum i=1^{n} a_{i} X_{i}\right\}=\sum_{i=1}^{n} a_{i} \mathbb{E}\left\{X_{i}\right\}$
The change of variable formula can be applied to random vectors. Let $Y=G(X)$:

$$
\left[\begin{array}{c}
Y_{1} \\
\vdots \\
Y_{n}
\end{array}\right]=\left[\begin{array}{c}
g_{1}\left(X_{1}, \cdots, X_{n}\right) \\
\vdots \\
g_{n}\left(X_{1}, \cdots, X_{n}\right)
\end{array}\right]
$$

If G is invertible then $X=G^{-1}(Y)$. Let $H(Y)=G^{-1}(Y)$:

$$
\left[\begin{array}{c}
X_{1} \\
\vdots \\
X_{n}
\end{array}\right]=\left[\begin{array}{c}
h_{1}\left(Y_{1}, \cdots, Y_{n}\right) \\
\vdots \\
h_{n}\left(Y_{1}, \cdots, Y_{n}\right)
\end{array}\right]
$$

The matrix of partial derivatives of $H(y)$ forms the Jacobian:

$$
J(y)=\left[\begin{array}{c}
\frac{\partial}{\partial y_{1}} h_{1} \cdots \frac{\partial}{\partial y_{n}} h_{1} \\
\vdots \\
\frac{\partial}{\partial y_{1}} h_{n} \cdots \frac{\partial}{\partial y_{n}} h_{n}
\end{array}\right]
$$

$$
f_{Y}(y)=f_{X}(H(y))|\operatorname{det} J(y)|
$$

The characteristic function of a (discrete or continuous) random variable X is $\varphi_{X}(t)=\mathbb{E}\{\exp (i t X)\}, t \in \mathbb{R}$. For a random vector $X=\left(X_{1}, X_{2}, \cdots, X_{n}\right)$, the characteristic function is $\varphi_{X}(t)=\mathbb{E}\left\{\exp \left(i t^{T} X\right)\right\}$, $t \in \mathbb{R}^{n}$. Similarly to the Fourier transform, the characteristic function uniquely describes a pdf. Suppose that X and Y are random vectors with $\varphi_{X}(t)=\varphi_{Y}(t)$ for all $t \in \mathbb{R}^{n}$, then X and Y have the same probability distribution.

$$
i^{n} \mathbb{E}\left(X^{n}\right)=\frac{d^{n}}{d t^{n}} \varphi_{X}(t=0)
$$

3F3 Statistical Signal Processing
by Ziyi Z., Page 2 in 4

2 Random Processes

2.1 Random Process

A discrete time random (or stochastic) process is one of the following infinite col lection of random variables: $\left\{X_{n}\right\}_{n=-\infty}^{\infty}$ or $\left\{X_{n}\right\}_{n=0}^{\infty}$ or $\left\{X_{n}\right\}_{n=1}^{\infty}$ Random walk:

$$
\begin{gathered}
X_{n}=\left\{\begin{array}{l}
X_{n-1}+1, \quad \text { w.p. } q \\
X_{n-1}-1, \quad \text { w.p. } 1-q
\end{array}\right. \\
X_{0}=0
\end{gathered}
$$

2.2 Finite Dimensional Distributions

To completely specify a discrete time random process X_{0}, X_{1}, \cdots, we must specify their joint probability density function $f_{X_{0}, X_{1}, \cdots, X_{n}}\left(x_{0}, x_{1}, \cdots, x_{n}\right)$ for all integers $n \geq 0$ when X_{0}, X_{1}, \cdots is a collection of continuous random variables.
If X_{0}, X_{1}, \cdots is a collection of discrete random variables then we must spe cify their joint probability mass function $p_{X_{0}, X_{1}, \cdots, X_{n}}\left(x_{0}, x_{1}, \cdots, x_{n}\right)$ for all integers $n \geq 0$.
Markov chain: Let $\left\{X_{n}\right\}_{n \geq 0}$ be discrete random variables taking values in $S=$ $\{1, \cdots, L\}$. The transition probability matrix Q is a non-negative matrix and each row sums to one.
$Q=\left[\begin{array}{cccc}Q_{1,1} & Q_{1,2} & \cdots & Q_{1, L} \\ Q_{2,1} & Q_{2,2} & \cdots & Q_{2, L} \\ \vdots & \vdots & \ddots & \vdots \\ Q_{L, 1} & Q_{L, 2} & \cdots & Q_{L, L}\end{array}\right]$

The conditional pmf of X_{n} given $X_{0}=$ $i_{0}, \cdots, X_{n-1}=i_{n-1}$ is determined by Q :

$$
\operatorname{Pr}\left(X_{n}=i_{n} \mid X_{0}=i_{0}, \cdots, X_{n-1}=i_{n-1}\right)
$$

$$
=Q_{i_{n-1}, i_{n}}
$$

Assume the pmf of X_{0} is $p_{X_{0}}(i)=\lambda_{i}$ where $\lambda=\left(\lambda_{1}, \cdots, \lambda_{L}\right)$ is given. The pair (λ, Q) completely defines the Markov chain. We call Q the transition probability matrix of the MC and λ the initial distribution of the chain. Only the most recent value $X_{n-1}=i_{n-1}$ is needed to ge nerate X_{n}. This limited memory property is known as the Markov property
Marginals of a Markov chain:

$$
p\left(i_{n}\right)=\left(\lambda Q^{n}\right)_{i_{n}}
$$

A discrete time random process X_{0}, X_{1}, \cdots is strictly stationary if for
all (section size) k and displacement For the $\operatorname{AR}(1)$ case:

$$
\begin{aligned}
& f_{X_{0}, \cdots, X_{k}}\left(x_{0}, \cdots, x_{k}\right) \\
& \quad=f_{X_{m}, \cdots, X_{k+m}}\left(x_{m}, \cdots, x_{k+m}\right)
\end{aligned}
$$

Strict stationarity means any two 'sections' of the process $\left(X_{0}, \cdots, X_{k}\right)$ and $\left(X_{m}, \cdots, X_{m+k}\right)$ are statistically indistinguishable for any displacement m.
Invariant distribution of a Markov chain: Consider the transition probability matix Q with state-space S. The pmf $\pi=$ $\left(\pi_{i}: i \in S\right)$ is invariant for Q if $\pi Q=\pi$ $\left(\pi_{i}: l \in S\right)$ is
for all $j \in S$:

$$
\sum_{i \in S} \pi_{i} Q_{i, j}=\pi_{j}
$$

The Markov chain (π, Q) is strictly stationary. The pmf of (X_{m}, \cdots, X_{m+k}), for any $m \in\{0,1, \cdots\}$, can be written as:

$$
\begin{aligned}
& p\left(i_{m}, \cdots, i_{m+k}\right)= \\
& \quad \pi_{i_{m}} Q_{i_{m}, i_{m+1}} \cdots Q_{i_{m+k-1}, i_{m+k}}
\end{aligned}
$$

Ergodic theorem: When the MC is irreducible then for any initial distribution λ, the sample (or empirical) average converges to the ensemble average:

$$
\frac{1}{n+1} \sum_{k=0}^{n} r\left(X_{k}\right) \rightarrow \sum_{i \in S} \pi_{i} r(i)
$$

An irreducible Markov chain refers to a chain where all state values in S communicate with each other. This means for any pair of states (i, j), the Markov chain starting in i will eventually visit j and vice versa.

2.3 Time-Series Analysis

A time series is a set of observations y_{n}, $n=0,1, \cdots$, arranged in increasing time. White noise: Let $\left\{W_{n}\right\}_{n=-\infty}^{\infty}$ be a sequence of random variables such that $\mathbb{E}\left(W_{n}\right)=0$ for all n,

$$
\mathbb{E}\left(W_{i} W_{j}\right)= \begin{cases}\sigma^{2}, & \text { for } i=j \\ 0, & \text { for } i \neq j\end{cases}
$$

Auto-regressive (AR) process: The $\operatorname{AR}(p)$ process $\left\{X_{n}\right\}_{n=-\infty}^{\infty}$ of the order p is:

$$
X_{n}=\left(\sum_{i=1}^{p} a_{i} X_{n-i}\right)+W_{n}
$$

$$
X_{n}=a X_{n-1}+W_{n}=\sum_{k=0}^{\infty} W_{n-k} a^{k}
$$

$\operatorname{AR}(1)$ is causal with impulse response $\left\{a^{k}\right\}_{k \geq 0}$.

$$
\begin{gathered}
\mathbb{E}\left\{X_{n}\right\}=\sum_{k=0}^{\infty} \mathbb{E}\left\{W_{n-k} a^{k}\right\}=0 \\
\mathbb{E}\left\{X_{n}^{2}\right\}=\sum_{k=0}^{\infty} \mathbb{E}\left\{W_{n-k}^{2} a^{2 k}\right\}=\frac{\sigma^{2}}{1-a^{2}}
\end{gathered}
$$

Wide sense stationary (WSS): $\left\{X_{n}\right\}_{n=-\infty}^{\infty}$ is wide-sense stationary if:

1. $\mathbb{E}\left\{X_{n}\right\}=\mu$ for all n (has constant mean)
2. $\mathbb{E}\left\{X_{n}^{2}\right\}<\infty$ for all n (has finite va riance)
3. $\mathbb{E}\left\{X_{n_{1}} X_{n_{2}}\right\}=\mathbb{E}\left\{X_{n_{1}+k} X_{n_{2}+k}\right\}$ for any n_{1}, n_{2}, k.
The correlation function of a WSS pro cess is defined as $R_{X}(k)=\mathbb{E}\left\{X_{0} X_{k}\right\}$. The $\operatorname{AR}(1)$ process is WSS and $R_{X}(k)=a^{k} \sigma_{X}^{2}$ Moving average (MA) process: The MA(q) process $\left\{X_{n}\right\}_{n=-\infty}^{\infty}$ of the order q is:

$$
X_{n}=\sum_{i=1}^{q} b_{i} W_{n-i}+W_{n}
$$

$$
\begin{aligned}
\mathbb{E}\left\{X_{n}^{2}\right\} & =\sum_{i=0}^{q} b_{i}^{2} \mathbb{E}\left\{W_{n-i}^{2}\right\}+\mathbb{E}\left\{W_{n}^{2}\right\} \\
& =\sigma^{2}\left(1+b_{1}^{2}+\cdots+b_{q}^{2}\right)
\end{aligned}
$$

If the input $\left\{W_{n}\right\}_{n=-\infty}^{\infty}$ of a discrete time LTI system with impulse response $\left\{h_{n}\right\}_{n=-\infty}^{\infty}$ is WSS then its output $\left\{Y_{n}\right\}_{n=-\infty}^{\infty}$ is also WSS.

$$
\mathbb{E}\left\{Y_{n}\right\}=\mathbb{E}\left\{\sum_{k=-\infty}^{\infty} h_{n-k} W_{k}\right\}
$$

$$
=\mathbb{E}\left\{W_{0}\right\} \sum_{k=-\infty}^{\infty} h_{n-k}
$$

The correlation of the output is
$\mathbb{E}\left\{Y_{n_{1}} Y_{n_{2}}\right\}$

$$
=\mathbb{E}\left\{\sum_{l=-\infty}^{\infty} \sum_{k=-\infty}^{\infty} h_{k} h_{l} W_{n_{1}-k} W_{n_{2}-l}\right\}
$$

$$
=\sum_{l=-\infty}^{\infty} \sum_{k=-\infty}^{\infty} h_{k} h_{l} R_{W}\left(n_{2}-n_{1}+k-l\right)
$$

Thus the MA process is WSS.

2.4 Power Spectrum

Let $R_{X}(k)$ be the correlation function of a discrete time WSS process. The power spectrum density $S_{X}(f)$ is:

$$
S_{X}(f)=\sum_{k=-\infty}^{\infty} R_{X}(k) e^{-j 2 \pi f k}
$$

The inversion formula is:

$$
R_{X}(n)=\int_{-1 / 2}^{1 / 2} S_{X}(f) e^{j 2 \pi f n} d f
$$

Power spectrum shows how the variance of X_{n} is spread across frequency. If $R_{X}(k)$ is the correlation function of a discrete time WSS process then the power spectrum density $S_{X}(f)$ is an even, real valued and nonnegative function of f. Moreover, $S_{X}(f)$ is a continuous function if $\sum_{k=-\infty}^{\infty}\left|R_{X}(k)\right|<\infty$
The area under $S_{X}(f)$ in the frequency band gives the power of the bandlimited output Y_{n}.
The ARMA model:The $\operatorname{ARMA}(p, q)$ process $\left\{X_{n}\right\}_{n=-\infty}^{\infty}$ is the discrete time process satisfying:

$$
X_{n}=\sum_{i=1}^{p} a_{i} X_{n-i}+W_{n}+\sum_{i=1}^{q} b_{i} W_{n-i}
$$

The ARMA process is WSS and it can be expressed as a causal filter applied to $\left\{W_{n}\right\}_{n=-\infty}^{\infty}$.
For a random process $\left\{X_{n}\right\}$, the expected instantaneous power is $\mathbb{E}\left\{X_{n}^{2}\right\}$ while the expected average power is:

$$
\lim _{N \rightarrow \infty} \frac{1}{2 N+1} \sum_{n=-N}^{N} \mathbb{E}\left\{X_{n}^{2}\right\}
$$

If the process is WSS, then $\mathbb{E}\left\{X_{n}^{2}\right\}=$ $R_{X}(0)$ for all n.
$R_{X}(0)=\int_{-1 / 2}^{1 / 2} S_{X}(f) d f$

The area under the (non-negative) function $S_{X}(f)$ gives the total power of the WSS process $\left\{X_{n}\right\}_{n=-\infty}^{\infty}$
The area under $S_{X}(f)$ in the frequency band gives the power of the bandlimited output Y_{n}.

$$
\begin{aligned}
R_{Y}(0) & =\int_{-f_{2}}^{-f_{1}} S_{X}(f) d f+\int_{f_{1}}^{f_{2}} S_{X}(f) d f \\
& =2 \int_{f_{1}}^{f_{2}} S_{X}(f) d f
\end{aligned}
$$

3 Detection, Estimation and Inference

3.1 Discrete-time Random Processes

We define a discrete-time random process as an ensemble of functions of ω which is a random variable having a probability density function $f(\omega)$.

$$
\left\{X_{n}(\omega)\right\}, n=-\infty, \cdots,-1,0,1, \cdots, \infty
$$

The mean of a random process $\left\{X_{n}\right\}$ is defined as $\mathbb{E}\left[X_{n}\right]$ and the autocorrelation function as:

$$
r_{X X}[n, m]=\mathbb{E}\left[X_{n} X_{m}\right]
$$

The cross-correlation function between two processes $\left\{X_{n}\right\}$ and $\left\{Y_{n}\right\}$ is:

$$
r_{X Y}[n, m]=\mathbb{E}\left[X_{n} Y_{m}\right]
$$

A stationary process has the same statitical characteristics irrespective of shifts along the time axis.
For a wide-sense stationary random process $\left\{X_{n}\right\}$, the power spectrum is defined as the discrete-time Fourier transform (DTFT) of the discrete autocorrelation function:

$$
S_{X}\left(e^{j \Omega}\right)=\sum_{m=-\infty}^{\infty} r_{X X}[m] e^{-j m \Omega}
$$

The normalised frequency is $\Omega=\omega T$ where T is the sampling interval of the discrete time process and ω is the sampling frequency. The power spectrum can be interpreted as a density spectrum in the sense that the mean-squared signal value at the output of an ideal band-pass filter with lower and upper cut-off frequencies of ω_{l} and ω_{u} is given by:

$$
E\left[Y_{n}^{2}\right]=\frac{1}{\pi} \int_{\omega_{l} T}^{\omega_{u} T} S_{X}\left(e^{j \Omega}\right) d \Omega
$$

White noise is defined in terms of its auto-covariance function. A wide sense

3F3 Statistical Signal Processing

by Zıyı Z., Page 3 in 4

sta
if:
if:

$$
\begin{aligned}
c_{X X}[m] & =\mathbb{E}\left[\left(X_{n}-\mu\right)\left(X_{n+m}-\mu\right)\right] \\
& =\sigma_{X}^{2} \delta[m]
\end{aligned}
$$

$\sigma_{X}^{2}=\mathbb{E}\left[\left(X_{n}-\mu\right)^{2}\right]$ is the variance of the process. The power spectrum of zero mean white noise is σ_{X}^{2}.
The N-th order pdf for the Gaussian white noise process is:
$f_{X_{n_{1}}, X_{n_{2}}, \cdots, X_{n_{N}}}\left(\alpha_{1}, \alpha_{2}, \cdots, \alpha_{N}\right)$

$$
=\prod_{i=1}^{N} \mathcal{N}\left(\alpha_{i} \mid 0, \sigma_{X}^{2}\right)
$$

The Gaussian white noise process is Strict sense stationary.
When a wide-sense stationary discrete random process $\left\{X_{n}\right\}$ is passed through a stable, linear time invariant (LTI) system with digital impulse response $\left\{h_{n}\right\}$, the output process $\left\{Y_{n}\right\}$ is also WSS.

$$
y_{n}=\sum_{k=-\infty}^{\infty} h_{k} x_{n-k}=x_{n} \star h_{n}
$$

The output correlation functions and power spectra can be expressed in terms of the input statistics and the LTI system

$$
\begin{aligned}
r_{X Y}[k] & =\sum_{l=-\infty}^{\infty} h_{l} r_{X X}[k-l]=h_{k} * r_{X X}[k] \\
r_{Y Y}[l] & =\sum_{k=-\infty}^{\infty} \sum_{i=-\infty}^{\infty} h_{k} h_{i} r_{X X}[l+i-k] \\
& =h_{l} * h_{-l} * r_{X X}[l]
\end{aligned}
$$

$$
S_{Y}\left(e^{j \omega T}\right)=\left|H\left(e^{j \omega T}\right)\right|^{2} S_{X}\left(e^{j \omega T}\right)
$$

For an Ergodic random process we can estimate expectations by performing time-averaging on a single sample func tion:
$\mu=\mathbb{E}\left[X_{n}\right]=\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=0}^{N-1} x_{n}$

$$
r_{X X}[k]=\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=0}^{N-1} x_{n} x_{n+k}
$$

The cross-power spectrum of d and x is:

$$
S_{x d}\left(e^{j \Omega}\right)=H\left(e^{j \Omega}\right) S_{x}\left(e^{j \Omega}\right)
$$

A necessary and sufficient condition for mean ergodicity is given by:

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=0}^{N-1} c_{X X}[k]=0
$$

3.2 Optimal Filtering Theory

Wiener filter is a linear filter which would optimally estimate d_{n} given just the noisy observations x_{n} and some assumptions about the statistics of the random signal and noise processes.

$$
x_{n}=d_{n}+v_{n}
$$

In general, we can filter the observed signal x_{n} with an infinite dimensional filter, having a non-causal impulse response h_{p}, to obtain an estimate \hat{d}_{n} of the desired signal:

$$
\hat{d}_{n}=\sum_{p=-\infty}^{\infty} h_{p} x_{n-p}
$$

We can measure performance of the filter in terms of expectations using the meansquared error (MSE) criterion

$$
\begin{gathered}
\epsilon_{n}=d_{n}-\hat{d}_{n}=d_{n}-\sum_{p=-\infty}^{\infty} h_{p} x_{n-p} \\
J=\mathbb{E}\left[\epsilon_{n}^{2}\right]
\end{gathered}
$$

The Wiener filter assumes that $\left\{x_{n}\right\}$ and $\left\{d_{n}\right\}$ are jointly wide-sense stationary while $\left\{d_{n}\right\}$ and $\left\{v_{n}\right\}$ have zero mean. The expected error may be minimised with respect to the impulse response values h_{q} :

$$
\frac{\partial J}{\partial h_{q}}=\mathbb{E}\left[\frac{\partial \epsilon_{n}^{2}}{\partial h_{q}}\right]=\mathbb{E}\left[2 \epsilon_{n} \frac{\partial \epsilon_{n}}{\partial h_{q}}\right]=0
$$

The orthogonality principle:
$\mathbb{E}\left[\epsilon_{n} x_{n-q}\right]=r_{x d}[q]-\sum_{p=-\infty}^{\infty} h_{p} r_{x x}[q-p]=0$
The Wiener-Hopf equations:
$\sum_{p=-\infty}^{\infty} h_{p} r_{x x}[q-p]=h_{q} * r_{x x}[q]=r_{x d}[q]$
The cross-power spectrum is in general
complex valued and measures the coherence between two process at a particular frequency.
Frequency domain Wiener filter:

$$
H\left(e^{j \Omega}\right)=\frac{S_{x d}\left(e^{j \Omega}\right)}{S_{x}\left(e^{j \Omega}\right)}
$$

The minimum mean-squared error value of the optimal filter:
$J_{\min }=\mathbb{E}\left[\epsilon_{n} d_{n}\right]=r_{d d}[0]-\sum_{p=-\infty}^{\infty} h_{p} r_{x d}[p]$
The minimum error in frequency domain:
$\frac{1}{2 \pi} \int_{-\pi}^{+\pi} S_{d}\left(e^{j \Omega}\right)-H\left(e^{j \Omega}\right) S_{x d}^{*}\left(e^{j \Omega}\right) d \Omega$
When the desired signal process d_{n} is uncorrelated with the noise process v_{n} :

$$
\begin{gathered}
r_{d v}[k]=\mathbb{E}\left[d_{n} v_{n+k}\right]=0 \\
r_{x d}[q]=r_{d d}[q]
\end{gathered}
$$

$$
r_{x x}[q]=r_{d d}[q]+r_{v v}[q]
$$

Thus the Wiener filter becomes:

$$
\begin{aligned}
H\left(e^{j \Omega}\right) & =\frac{S_{d}\left(e^{j \Omega}\right)}{S_{d}\left(e^{j \Omega}\right)+S_{v}\left(e^{j \Omega}\right)} \\
& =\frac{1}{1+1 / \rho(\Omega)}
\end{aligned}
$$

$\rho(\Omega)=S_{d}\left(e^{j \Omega}\right) / S_{v}\left(e^{j \Omega}\right)$ is the (frequency dependent) signal-to-noise (SNR) power ratio. At those frequencies where the SNR is large, the gain of the filter tends to unity; whereas the gain tends to a small value at those frequencies where the SNR is small. The minimum expected error in this case reduces, in the frequency domain to.
$J_{\min }=\frac{1}{2 \pi} \int_{-\pi}^{+\pi} S_{d}\left(e^{j \Omega}\right)\left(\frac{1}{1+\rho(\Omega)}\right) d \Omega$
In general, the Wiener filter is noncausal, and hence physically unrealisable In the a causal P-th order Finite Impulse

Response (FIR) Wiener filter, the signal estimate is formed as.

$$
\hat{d}_{n}=\sum_{p=0}^{P} h_{p} x_{n-p}
$$

The filter derivation proceeds much as ons as follows:

$$
\sum_{p=-0}^{P} h_{p} r_{x x}[q-p]=r_{x d}[q]
$$

The equations may be written in matrix form as $R_{x} h=r_{x d}$:

$$
R_{x}\left[\begin{array}{c}
h_{0} \\
\vdots \\
h_{P}
\end{array}\right]=\left[\begin{array}{c}
r_{x d}[0] \\
\vdots \\
r_{x d}[P]
\end{array}\right]
$$

The correlation matrix R_{x} is given by:

$$
R_{x}=\left[\begin{array}{ccc}
r_{x x}[0] & \cdots & r_{x x}[P] \\
\vdots & \ddots & \vdots \\
r_{x x}[P] & \cdots & r_{x x}[0]
\end{array}\right]
$$

The correlation matrix is symmetric and has constant diagonals (a symmetric Toeplitz matrix) since $r_{x x}[k]=r_{x x}[-k]$. The coefficient vector of the FIR Wiener filter:

$$
h=R_{x}^{-1} r_{x d}
$$

The minimum mean-squared error is given by:
$J_{\min }=r_{d d}[0]-r_{x d}^{T} h=r_{d d}[0]-r_{x d}^{T} R_{x}^{-1} r_{x d}$

3.3 Optimal Detection

The matched filter detects a known deterministic signal s_{n} buried in random noise v_{n}.

$$
x_{n}=s_{n}+v_{n}
$$

The output of an FIR filter at time $N-1$ is:

$$
\begin{aligned}
y_{N-1} & =\sum_{m=0}^{N-1} h_{m} x_{N-1}=h^{T} \tilde{x} \\
& =h^{T} \tilde{s}+h^{T} \tilde{v}=y_{N-1}^{s}+y_{N-1}^{n}
\end{aligned}
$$

$\tilde{x}=\left[x_{N-1}, x_{N-2}, \cdots, x_{0}\right]^{T}$ is the timereversed vector and \tilde{s} is defined similarly. Define the signal-to-noise ratio (SNR) at the output of the filter as:

$$
\frac{\mathbb{E}\left[\left|y_{N-1}^{s}\right|^{2}\right]}{\mathbb{E}\left[\left|y_{N-1}^{n}\right|^{2}\right]}=\frac{\left|h^{T} \tilde{s}\right|^{2}}{\mathbb{E}\left[\left|h^{T} \tilde{\nu}\right|^{2}\right]}
$$

We can represent the filter coefficient vec-
tor h as a tinear combination of the eigenvectors of $\tilde{s} \tilde{S}^{T}$:

$$
h=\alpha e_{0}+\beta e_{1}+\gamma e_{2}+\cdots
$$

The unit length vector $e_{0}=\tilde{s} /|\tilde{s}|$ is an eienvector and $\alpha=\left(\tilde{s}^{T} \tilde{s}\right)$ is the corresponding eigenvalue. The set of $N-1$ orthonormal vectors e_{1}, e_{2}, \cdots are orthogonal to \tilde{s} with eigenvalue $\beta=\gamma=\cdots=0$. The SNR may be expressed as:

$$
\frac{\left|h^{T} \tilde{s}\right|^{2}}{\mathbb{E}\left[\left|h^{T} \tilde{v}\right|^{2}\right]}=\frac{\alpha^{2} \tilde{s}^{T} \tilde{s}}{\sigma_{v}^{2}\left(\alpha^{2}+\beta^{2}+\gamma^{2}+\cdots\right)}
$$

The largest possible value of α given that $|h|=1$ corresponds to $\alpha=1$.

$$
h^{\mathrm{opt}}=e_{0}=\frac{\tilde{s}}{|\tilde{s}|}
$$

The optimal filter coefficients are just the (normalised) time-reversed signal. The maximum SNR at the optimal filter setting is given by:

$$
\mathrm{SNR}^{\mathrm{opt}}=\frac{\tilde{s}^{T} \tilde{s}}{\sigma_{v}^{2}}
$$

3F3 Statistical Signal Processing

 by Ziyi Z., Page 4 in 4
3.4 Estimation Theory and Inference

In estimation theory, we start off with vector of signal measurements x and so me unknown quantities, or parameters θ that we wish to infer. The probability θ that we wish to infer. The probability
distribution of data x can be expressed distribution of data x can be expressed
in terms of a joint probability density function (or probability mass function if the data are discrete-valued), or like lihood function:

$$
p(x \mid \theta)
$$

The prior probability density function can be formulated for θ from physical or other modelling considerations:
$p(\theta)$
In the Linear Model it is assumed that the data x are generated as a linear function of the parameters θ with an additive random modelling error term e.

$$
x=G \theta+e
$$

G is the design matrix.
Einstein-Wiener-Khinchin Theorem: Take a time-windowed version of the signal x_{n}, having duration $2 N+1$ samples and zero elsewhere:

$$
x_{n}^{N}=w_{n}^{N} x_{n}
$$

$$
w_{n}^{N}= \begin{cases}1, & -N \leq n \leq N \\ 0, & \text { otherwise }\end{cases}
$$

We have the following DTFT relationship:
$\operatorname{DTFT}\left\{r_{x x}[m] t[m]\right\}=$

$$
\mathbb{E}\left[\frac{1}{2 N+1}\left|X^{N}\left(e^{j \Omega}\right)\right|^{2}\right]
$$

$t[m]$ is the deterministic autocorrelation function of the window function w_{n}. In the limit we can prove that the power spectrum is proportional to the expected value of the DTFT-squared of the data.
$S_{x}\left(e^{j \Omega}\right)=\lim _{N \rightarrow \infty} \mathbb{E}\left[\frac{1}{2 N+1}\left|X^{N}\left(e^{j \Omega}\right)\right|^{2}\right]$
An estimator is termed unbiased if $\mathbb{E}[\hat{\mu}]=$ μ. An estimator is termed consistent if it is unbiased and its variance tends to zero as $N \rightarrow \infty$.
The 'best fit' model that matches the data can be found by minimising the error
$J=e^{T} e$. For invertible $G^{T} G$, the classical of θ is

$$
\begin{gathered}
\theta^{\mathrm{OLS}}=\left(G^{T} G\right)^{-1} G^{T} x \\
\mathbb{E}\left[\theta^{\mathrm{OLS}}\right]=\left(G^{T} G\right)^{-1} G^{T} G \theta=\theta
\end{gathered}
$$

The OLS estimator is the minimum variance unbiased estimator of θ. Such an estimator is termed a Best Linear Unbiased Estimator (BLUE)
The Maximum Likelihood (ML) estimate for θ is the value of θ which maximises the likelihood for given observations x :

$$
\theta^{M L}=\underset{\theta}{\operatorname{argmax}}\{p(x \mid \theta)\}
$$

The ML solution is identical to the OLS solution for the linear Gaussian model. The noise variance is the just meansquared error at the ML parameter solution.

$$
\sigma_{e}^{2 M L}=J^{M L} / N
$$

The posterior or a posteriori probability for the parameter is given by Bayes' Theorem:

$$
p(\theta \mid x)=\frac{p(x \mid \theta) p(\theta)}{p(x)} \propto p(x \mid \theta) p(\theta)
$$

The denominator $p(x)$, referred to as the marginal likelihood, is constant for any given observation x.

$$
p(x)=\int p(x \mid \theta) p(\theta) d x
$$

The maximum a posteriori (MAP) estimate is the value of θ which maximises the posterior distribution:

$$
\theta^{M A P}=\underset{\theta}{\operatorname{argmax}}\{p(\theta \mid x)\}
$$

Suppose that the prior on parameter vector θ is the multivariate Gaussian $p(\theta)=$ $\mathcal{N}\left(m_{\theta}, C_{\theta}\right)$. The MAP estimator for Linear Gaussian model is then given by:
$\theta^{\mathrm{MAP}}=\Phi^{-1} \Theta=$
$\left(G^{T} G+\sigma_{e}^{2} C_{\theta}^{-1}\right)^{-1}\left(G^{T} x+\sigma_{e}^{2} C_{\theta}^{-1} m_{\theta}\right)$
The posterior distribution is itself a multivariate Gaussian:

$$
p(\theta \mid x)=\mathcal{N}\left(\theta^{\mathrm{MAP}}, \sigma_{e}^{2} \Phi^{-1}\right)
$$

We can write the expected cost over all of the unknown parameters, conditional upon the observed data x :

$$
\mathbb{E}[C(\hat{\theta}, \theta)]=\int C(\hat{\theta}, \theta) p(\theta \mid x) d \theta
$$

A classic estimation technique related to the Wiener filtering objective function is the Minimum mean-squared error (MMSE) estimation method.

$$
\begin{aligned}
\theta^{\mathrm{MMSE}} & =\underset{\hat{\theta}}{\operatorname{argmin}} \mathbb{E}\left[(\hat{\theta}-\theta)^{2}\right] \\
& =\mathbb{E}[\theta \mid x]=\int \theta p(\theta \mid x) d \theta
\end{aligned}
$$

The MMSE estimator for the Linear Gaussian model is identical to the MAP solution.

