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1 Probability and Random Variables
1.1 Probability Space

The term random experiment is used to
describe any situation which has a set of
possible outcomes, each of which occurs
with a 1partlcular probability. To mathe-
matically describe a random experiment
we must spec1fy

1. The sample space Q, which is the
set of all possible outcomes of the
random experiment. We call any
subset of A C Q) an event.

2. A mapping/function P from
events to a number in the interval
[0,1],1.e. {P(A),ACQ}.

We call P the probability and ((), P) the
probability space.

Axioms of probability: A probability P as-
signs each event E, E C (), a number in
[0,1] and P must satisfy the following
properties:

1. P(Q)=1
2. For events A,Bsuchthat ANB=0

(i.e. disjoint) then P(AUB) = P(A)+
P(B).

3. If Aj,Ap,--- are disjoint then
P(U2 Aj) = 152, P(A)).

Define the indicator function for a set or
event E,

ifteE
otherwise

Tg(r) = {});

When Q) is a discrete set {w1,w), -}, gi-
ven any non-negative sequence of num-
bers p1,po,--- that add to 1, we can defi-
ne a valid probability:

i=1

When Q) is the real line, probability can
be specified through a probability densi-
ty function ( F ). For a general event

, we can calc ulate the probability using:

P(E) :f Tp(0)f (1)dt

—00

1.2 Conditional Probability

The conditional probability of event A oc-
currlng given that event B has occurred
is defined to be:

P(ANB)

P(A|B) = o)

Two events A and B are independent if
P(AB) =P(ANB)=P(A)P(B).
Probability chain rule:

P(A1-Ay14y)
n

[ Treailas-ai)

i=2

=P(Aq)

Bayes’ theorem:

_p(BA) _
p(B|A) = o)

p(AlB)p(B)
p(A)

1.3 Random Variables

Given a probability space (Q,P), a ran-
dom variableis a function X(w) which
maps each element w of the sample space
Q onto a point on the real line.

For a discrete random variable X with
range {xq,x),---}, we define the probabili-
ty mass function(pmf) of X to be the func-
tion px : {x1,x2,---} — [0, 1] where:

px(x;) =Pr(X =x;)

For any set A:

ot

Il
—_

Pr(XeA)= ) Ta(xj)px(x;)

1

Continuous random variables are defi-
ned as having a probability density func-
tion (pdf.) A random variable X is conti-
nuous if there exists a non-negative func-

tion fx(x) > 0 such that [ fx(x)dx =1
and for any set A:

()
Pr(XeA):f Ty

The cumulative distribution function (cdf)
can describe both discrete and conti-
nuous random variables and is defined

to be:
Fx(x) =Pr(X <x)
The cdf has the following properties:
1. 0<Fy(x)<1.

(%) fx (x)dx

2. Fx(x)is non-decreasing as x incre-

ases.
3. Pr(x; <X <xp)=Fx(x2)—Fx(x1)
4. limy_,_ o, Fx(x) = 0 and

limy o Fx(x)=1
5. If X is a continuous r.v. then Fx(x)
is continuous.
6. If X is discrete then Fy is right-
continuous: Fx(x) =lim, |, F(t) for
all x.
For a random variable Y = r(X) where
r is strictly increasing or strictly decre-

asing, r has an inverse r~! = s, we can
derive a formula for fy:

fr®) = fx (s(v))

dS(y)‘
dy

1.4 Bivariates
A bivariate are two jointly distributed
random variables. For two discrete ran-
dom variables X and Y where X €
{x1,-,xm}, Y € {y1,-+, vy}, we can de-
fine the joint pmf to be:

px,y (xi,9j) = Pr(X = x;, Y = pj)
The marginal pmfs are px(xx) =
Yipxy(xyj) and  py(y) =
Y PX,y(Xi, Vi)
Two discrete random variables X and
Y are independent if pxy(x,y) =
px(x)py(y) for all (x,p).

For the discrete rvs X and Y, the condi-
tional pmf of X given Y =y is:

px,y (%)

px|y(xly) = )

For continuous random variables X and
Y, we call a non-negative function f(x,v)
their joint probability density function

if f_o; (f_o;f(x,y)dx)dy =1 and for any
sets (events) A€ Rand Be R:

Pr(XeA,YeB)=

f_ mw(f_ HA<x>f<x,y>dx)dy

Two continuous rvs X and Y are indepen-
dentif and only if fy (x,v) = fx (x)fy (v)

For the continuous rvs X and Y, the con-
ditional pdf of X given Y =y is:

fx,y(xp)

Fxpy (xly) = 7o)

The pdf of the sum of two independent
rvs is the convolution of their pdfs. Let
X1 and X, be two independent rvs and
Y = Xl + Xz.

= ﬁ fo(y—x1)f1(x1)

The expected value or mean value or first
moment of a function 7(X,Y) of the biva-
riate (X,Y) is:

E{r(X,Y)} =
Zy Yt y)px, v (%), disc.
oo [ rxe ) fx v (x5, p)dxdy,  cts.
The conditional expectation is:
E{r(X,Y)|Y = p} =
Zojé T(Xr}’)Px|Y(X|y), disc.
52 r(x ) fxpy (xlp)dx,  cts.

Rule of iterated expectation:

E{r(X,Y)} = E(E{r(X,Y)|Y})

1.5 Multivariates

Let X;, X5, -+, X,, be n continuous (or dis-
crete) random variables. We call X =
(X1,---,X,) € R" a continuous (or dis-
crete) random vector.

Let f(x1,---,x;) be a non-negative func-

tion that integrates to 1. Then f is called
the pdf of the random vector X if for all

events Ay,---, A,
Pr(X1 €Ay, , Xp€Ay) =
(o] [ee)
J HAn(xn)"'J HAl(xl)f(Xlr"'rxn)
—00 -0
dxl---dx,,

The ith marginal of f(xy,--
ned by:

fxi(

,X;) is obtai-

j J [, xn)

dxjoydXjpycedxy

The n random variables Xj,---,X,, are
independent if and only if for every
Al Ay
Pr(X1 € Al"" ,Xn € An) =
Pr(X, € Ay)---Pr(X, € Ap)

Independence is equivalent to checking
that the joint pdf reduces to the product
of marginals:

f(xli X

= fx, (x1) - fx,, (xn)

Independence: If X1,---,X,, are indepen-
dent random variables then E{[T'_, X;} =
[T, E{X;}, i.e. the expectation of the

product is the product of the expecta-
tion.

Linearity: If X1,---,X,, are random varia-
bles and if ay,--,a,, are real constants
then E{} i =1"a;X;} = Z:lzl a;[E{X;}

The change of variable formula can be
applied to random vectors. Let Y = G(X):

Yy g1( X1, Xy)

Yul  [gn(X1,--

If G is invertible then X = G
H(Y)=G 1Y)

»Xn)
Y). Let

X11 [h(Yy,---,Yy)

Xn hy (Y1, -+, Yy)
The matrix of partial derivatives of H(p)

forms the Jacobian:

9 d
Tylhl"'ahl
J() =
d 3
Tylhn... Ehn
fr®) = fx (H®©))|det] (v)]

The characteristic function of a (discrete
or continuous) random variable X is
@x(t) = E{exp(itX)}, t e R. For a random
vector X = (Xy,X>,---,X;,), the characte-
ristic function is @x(t) = {exp(ltTX)}
t € R”. Similarly to the Fourier trans-

form, the characteristic function unique-
ly describes a pdf. Suppose that X and

Y are random vectors with @x(t) = @y (t)
for all t € R", then X and Y have the sa-
me probability distribution.

n

. d
i"E(X") = W(PXU:O)
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2 Random Processes
2.1 Random Process

A discrete time random (or stochastic) pro-
cess is one of the following infinite col-
lection of random variables: {X,,}52_., or

{Xn)52 or (Xy,)o2 Random walk:
X = Xy-1+1, wp.g
n Xy-1-1, wp.1l—gq

Xo=0

2.2 Finite Dimensional Distributions
To completely specify a discrete time ran-
dom process X, X1, -+, we must specify
their joint probability density function
X, X1, (X0, X1, , x) for all integers
n > 0 when X, Xy, is a collection of
continuous random variables.

If Xg, X1, -+ is a collection of discrete
random variables then we must spe-
cify their joint probability mass function
PXo,X;,+,X, (X0, X1, , Xp,) for all integers
n>0.

Markov chain: Let {X,},>0 be discrete
random variables taking values in S =
{1,---,L}. The transition probability ma-
trix Q is a non-negative matrix and each
row sums to one.

Qi1 Qi Q1L
Q21 Q22 QoL
Q1 Q2 QLL

The conditional pmf of X, given Xy =
ig,*++,Xy—1 = iy—1 is determined by Q:

Pr(Xy, = iplXo =ig,+, Xp-1 = ip-1)

= Qin—lrin

Assume the pmf of Xy is px (i) = A;
where A = (Ay,--+, Ap) is given. The pair
(A, Q) completely defines the Markov
chain. We call Q the transition probabi-
lity matrix of the MC and A the initial
distribution of the chain. Only the most
recent value X1 =1i,_1 is needed to ge-
nerate X,,. This limited memory property
is known as the Markov property.

Marginals of a Markov chain:
(AQ")i,

A discrete time random process
X0, Xq,--+ is strictly stationary if for

plin) =

all (section size) k and displacement
m > 0:

Fxo, X, (X0, Xk)

= fX,,,,---,XkW, (X s Xhem)
Strict stationarity means any two ’sec-
tions’ of the process (Xg,---,Xx) and
(X, -+ Xyyrk) are statistically indistin-
guishable for any displacement m.
Invariant distribution of a Markov chain:
Consider the transition probability ma-
trix Q with state-space S. The pmf 7 =

(1t; : i € S) is invariant for Q if T1Q =«
for all jEeS:

Z”iQi,j =7

ieS

The Markov chain (1, Q) is strictly statio-
nary. The pmf of (X;,, -, X;,4x), for any

me€{0,1,---}, can be written as:
Plims - imek) =
nim Qimrimﬂ o Qim+k—1 rim+k

Ergodic theorem: When the MC is irredu-
cible then for any initial distribution A,
the sample (or empirical) average conver-
ges to the ensemble average:

ir(xm — ) mirli)
k=0

i€eS
An irreducible Markov chain refers to a
chain where all state values in S commu-
nicate with each other. This means for
any pair of states (7, j), the Markov chain
starting in i will eventually visit j and
vice versa.

2.3 Time-Series Analysis

A time series is a set of observations v,
n=0,1,---, arranged in increasing time.
White noise: Let {W,,};2_., be a sequence

of random variables such that E(W,;,) = 0
for all n,

n+1

2 . .
o oo, fori=j
IE(WI W]) - {0’ for l Ij

Auto-regressive (AR) process: The AR(p)
process {X;,};%_o of the order p is:

Zaixn—i

i=1

+ W,

For the AR(1) case:

&Y
Xp=aXy_1+ Wy, = anfk“k
k=0
AR(1) is causal with impulse response

{a* 0.

EIX,) =) E{W, 0] =0
k=0

0 2
E(X2} =Y E{w2 %} =7
(X} Z { } 1-42
k=0
Wide sense stationary (WSS): { X, }5Z o is

wide-sense stationary if:

1. E{X,} = p for all n (has constant
mean)

2. IE{X%} < oo for all n (has finite va-
riance)

3. B{Xy, Xu,} = E{Xy, +kXn,+k} for
any ny,ny, k.

The correlation function of a WSS pro-
cess is defined as Ry (k) = E{XoXy}. The

AR(1) process is WSS and Ry (k) = aka}z(

Moving average (MA) process: The MA(q)
process {X;}5-_o of the order q is:

q
Xy = Zbiwn—i + Wy
i=1

q
7= ) UPE{WL )+ B{w)
i=0

=0 (1+b%+ ~~+b;)

If the input {W,};2_ of a discrete ti-
me LTI system with impulse respon-

se {h,}5e_o is WSS then its output
(Y, }5e_ o is also WSS.

E{Y,) { Z h,_ ka}

= E{Wp) Z M

k=—c0

The correlation of the output is

E{Yﬂl Yn2 }

_]E{ i i hkthnlkanl}

I=—c0 k=—c0
(o)

- Z i hihiRyy (np —nq +k—1)

|=—c0k=—00

Thus the MA process is WSS.
2.4 Power Spectrum

Let Rx (k) be the correlation function of
a discrete time WSS process. The power

spectrum density Sx(f) is:

= i Rx(k)e
k=—c0

The inversion formula is:

1/2 .
R(n) = j o speiag

—j2nfk

Power spectrum shows how the varian-
ce of X, is spread across frequency. If
Rx (k) is the correlation function of a dis-
crete time WSS process then the power
s?ectrum density Sx(f) is an even, re-
valued and nonnegative function of f.
Moreover, Sx (f) is a continuous function
if 307 IRx (k) <o
The area under Sx(f) in the frequency
band gives the power of the bandlimited
output Y,,.
The ARMA model:The ARMA(p,q) pro-
cess { X, 152 _o is the discrete time pro-
cess satistying:

14 q
Xn = Z“ixn—i + Wi+ Zbiwn—i
i=1 i=1

The ARMA process is WSS and it can
be expressed as a causal filter applied to

Wil —oo-

For a random process {X,,}, the expected
instantaneous power is IE{X,%} while the
expected average power is:

) el

If the process is WSS, then IE{X,%} =
Rx(0) for all n.

lim
N —oo 2N +1 "

1/2
Ry (0) :f Sx(f)df

-1/2

The area under the (non-negative) func-
tion Sx(f) gives the total power of the
WSS process {X;,}5>

n=—00
The area under Sx(f) in the frequency
band gives the power of the bandlimited
output Y,,.

il
Ry (0) :J Sx
-f

f:
- ZJ “Sx(f)df

f
(F)df + f Sx(f)df

3 Detection, Estimation and Inference
3.1 Discrete-time Random Processes
We define a discrete-time random pro-
cess as an ensemble of functions of w
which is a random variable having a pro-
bability density function f(w).
{(Xy(w)},n=-o0,---,-1,0,1,-++ ,00
The mean of a random process {X,,} is
defined as [E[X,,| and the autocorrelation
function as:
rxx[n,m] = E[X; X;]
The cross-correlation function between
two processes {X,} and {Y,,} is:

rxy[n,m] = E[X; Y]

A stationary process has the same stati-
stical characteristics irrespective of shifts
along the time axis.

For a wide-sense stationary random pro-
cess {X,,}, the power spectrum is defined
as the discrete-time Fourier transform
(DTFT) of the discrete autocorrelation
function:

(&)

Z T’XX[m]@_ij

m=—co

SX(ejQ) =

The normalised frequency is Q = wT
where T is the sam %mg interval of the
discrete time process and w is the samp-
ling frequency. The power spectrum can
be interpreted as a density spectrum in
the sense that the mean-squared signal
value at the output of an ideal band-pass
filter with lower and upper cut-off fre-
quencies of w; and w,, is given by:

1 (UMT
E[v?]=—
n 7 JoyT

White noise is defined in terms of its
auto-covariance function. A wide sense

Sx (¢?)dQ
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stationary process is termed white noise
if:

exx[m] =E[(Xy — ) (Xysm — 1]
= a2 6[m]
2 _ 21 - .
ox = IE[(Xn —H) ] is the variance of the
process. The power spectrum of zero

mean white noise is (7)2(.

The N-th order pdf for the Gaussian whi-
te noise process is:

Sy Xy e Xy, (@1, @27, AN)

z

= N(ai|0,a)2()
i=1

The Gaussian white noise process is
Strict sense stationary.

When a wide-sense stationary discrete
random process {X,,} is passed through a
stable, linear time invariant (LTI) system
with digital impulse response {h,}, the
output process {Y},} is also WSS.

(o)
Yn = Z hxy_g = xp*x hy
k=—c0

The output correlation functions and
power spectra can be expressed in terms
of the input statistics and the LTI system:

rxylk] = Z hyrxx[k—=1]= h = rxx[k]

|=—0c0
ryy(l] = Z thh rxx|l+i—k]
k=—c0i=—c0

=hp*h_p*rxx[l]

Sy (eju)T) _ 'H(eij)‘z Sy (ejmT)

For an Ergodic random l[))rocess we can
estimate expectations performing
time-averaging on a single sample func-
tion:

N-1
lim e Zx x
N N nXn+k
n=0

A necessary and sufficient condition for
mean ergodicity is given by:

rxx[k] =

LNl
li — k]=0
Jim nZdCXX[ ]

3.2 OptimalFiltering Theory

Wiener filter is a linear filter which
would optimally estimate d,, given just
the noisy observations x, and some ass-
umptions about the statistics of the ran-
dom signal and noise processes.

Xy =dy,+vy

In general, we can filter the observed si-
gnal x,, with an infinite dimensional fil-
ter, having a non-causal impulse respon-

se hiy, to obtain an estimate d, of the de-
sired signal:

o0
d, = Z hpXn—p
p=—c0

We can measure performance of the filter
in terms of expectations using the mean-

squared error (MSE) criterion:

(>8]
€ =dp _dAn =dy - Z hpxnfp

p==c0

] =E[ef]

The Wiener filter assumes that {x,} and
{d,} are jointly wide-sense stationary
while {d,,} and {v,;} have zero mean.

The expected error may be minimised
with respect to the impulse response va-

lues hg:
J de? 3 dey, |
Thq = IE[% =E 261’1 Thq =0

The orthogonality principle:

Z h rxx[q pl=

The Wiener-Hopf equations:

E[enxn— q =Txdlq

(o)
Z hprexlq —pl = hg *rexlq] = rvalq]

The cross-power spectrum of d and x is:
Syd (ejQ) — H(ejQ)Sx(ejQ)

The cross-power spectrum is in general
complex valued and measures the cohe-
rence between two process at a particular
frequency.

Frequency domain Wiener filter:

Sya ()

H(ejo): Sx(ejQ)

The minimum mean-squared error value
of the optimal filter:

Jmin = Elendy] = raal0] = ) hyryalp]
p:—oo

The minimum error in frequency do-
main:

L (i i i

o Sd(e )—H(e )Sd(e )dQ

When the desired signal process d,, is un-
correlated with the noise process v;;:

rav[k] =E[d k] =0

rxalgl =raalq)

rxx[q] = raalq] + rvu[q]
Thus the Wiener filter becomes:

Sd(eJQ)
Sd(ejQ)+Sv(ejQ)
1
T 1+1/p(Q)

H(e/?) =

p(QQ) = S, (efQ )/S,, (e]Q) is the (fre-
quency dependent) signal-to-noise (SNR)
power ratio. At those frequencies where
the SNR is large, the gain of the filter
tends to unity; whereas the gain tends to
a small value at those frequencies where
the SNR is small. The minimum expected
error in this case reduces, in the frequen-

cy domain to:
1 +7C . 1
- JOY
Jmin b J-—n Sd(e )(1+p(Q))dQ

In general, the Wiener filter is non-
causal, and hence physically unrealisable.
In the a causal P-th order Finite Impulse

Response (FIR) Wiener filter, the signal
estimate is formed as:

P
dy = Z hpxn—p
p=0

The filter derivation proceeds much as
before, leading to Wiener-Hopf equati-
ons as follows:

P
Z hprxx[q_p] =rxdlq]
p=-0

The equations may be written in matrix
form as Ryh =ry4:
ho rxd 0]
Rel i |=|
hp rxd[P]

The correlation matrix R, is given by:

rxx[0] rxx[P]
Ry=| :
rxx[P] rxx[0]

The correlation matrix is symmetric and
has constant diagonals (a symmetric To-
eplitz matrix) since ryy[k] = ryx[—k]. The
coefficient vector of the FIR Wiener filter:
h= R;l Txd

The minimum mean-squared error is gi-
ven by:

T T -1
Jmin = 1da[0] =7 gh =144[0] = 1 Ry 1xg

3.3 Optimal Detection

The matched filter detects a known deter-
ministic signal s,, buried in random noise
vy

Xy =Sn+Vn

The output of an FIR filter at time N -1
is:

N-1
UN-1 = thxN—l =h'z

m=0
Tz, 1T s n
=h'S+h 7=y5_1+¥n_1
X = [xN_l,xN_2,~-~,x0]T is the time-
reversed vector and § is defined similarly.

Define the signal-to-noise ratio (SNR) at
the output of the filter as:

IE[nyV,llz]: IhT 32
Elyg_,1?]  E[IhTo?]

We can represent the filter coefficient vec-
tor & as a linear combination of the eigen-

vectors of §57;

h=aey+per +yer+---

The unit length vector ey = §/|3| is an ei-

genvector and a = (5T5) is the correspon-
ding eigenvalue. The set of N — 1 ortho-
normal vectors ey, ep,--- are orthogonal

to § with eigenvalue p =y =--- = 0. The
SNR may be expressed as:
|nTs? a?3Ts
1E[|th|2] (a2 +p2+y2+- )

The largest possible value of a given that
|h| =1 corresponds to a = 1.

B

hopt =ep=

o

The optimal filter coefficients are just the
(normalised) time-reversed signal. The
maximum SNR at the optimal filter set-
ting is given by:
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3.4 Estimation Theory and Inference

In estimation theory, we start off with a
vector of signal measurements x and so-
me unknown quantities, or parameters,
0 that we wish to infer. The probability
distribution of data x can be expressed
in terms of a joint probability density
function (or probability mass function
if the data are discrete-valued), or like-
lihood function:

p(x16)
The prior probability density function
can be formulated for 6 from physical

or other modelling considerations:

p(0)

In the Linear Model it is assumed that
the data x are generated as a linear func-
tion of the parameters 6 with an additive
random modelling error term e.

x=GO+e

G is the design matrix.
Einstein-Wiener-Khinchin Theorem: Take
a time-windowed version of the signal
x,,, having duration 2N + 1 samples and
zero elsewhere:

N __ N
Xp =Wy Xn

N [1, -N<n<N
wy = .
n 0, otherwise

We have the following DTFT relation-
ship:
DTEFT {ryy[m]t[m]} =
1 N (,jQ 2]
E| ——|X ]
[ZN ()]
t[m] is the deterministic autocorrelation
function of the window function w,,. In
the limit we can prove that the power

spectrum is proportional to the expected
value of the DTFT-squared of the data.

5(0%) = Jim B[y ()]

An estimator is termed unbiased if E[fi] =
p. An estimator is termed consistent if it
is unbiased and its variance tends to zero
as N — oo.

The ‘best fit’ model that matches the da-
ta can be found by minimising the error

J = eTe. For invertible GT G, the classical
Ordinary Least Squares (OLS) estimator
of O is:

691 = (GTG) ' 6T«

IE[QOLS]:(GTG)_l GTGgo=0

The OLS estimator is the minimum va-
riance unbiased estimator of 0. Such an
estimator is termed a Best Linear Unbia-
sed Estimator (BLUE).

The Maximum Likelihood (ML) estimate
for O is the value of 6 which maximises
the likelihood for given observations x:

oML = argmax {p(x|0)}
0

The ML solution is identical to the OLS
solution for the linear Gaussian model.
The noise variance is the just mean-
squared error at the ML parameter so-
lution. ML

of = MN

The posterior or a posteriori probability
for the parameter is given by Bayes’ Theo-
rem:

p(x|0)p(0)
p(x)
The denominator p(x), referred to as the

marginal likelihood, is constant for any
given observation x.

p(Olx) = o p(x]0)p(0)

p(x) = j p(x10)p(6)dx

The maximum a posteriori (MAP) esti-
mate is the value of 6 which maximises
the posterior distribution:

oMAP argmax {p(0|x)}
0

Suppose that the prior on parameter vec-
tor 0 is the multivariate Gaussian p(0) =

N (mg,Cg). The MAP estimator for Line-
ar Gaussian model is then given by:

(6TG+02C5") " (G x+02C5 me)

The posterior distribution is itself a mul-
tivariate Gaussian:

p(Olx) = N (6MAF, o2 1)

We can write the expected cost over all
of the unknown parameters, conditional
upon the observed data x:

]E[C(é,@)] = J-C(é,e)p(elx)de

A classic estimation technique related to
the Wiener filtering objective function is
the Minimum mean-squared error (MM-
SE) estimation method.

oMMSE _ argminIE[(é - 9)2]
0
=E[0O]x] = jep(6|x)d6

The MMSE estimator for the Linear Gaus-
sian model is identical to the MAP solu-
tion.

(The End)



