
3F1 Signals and Systems
by Ziyi Z., Page 1 in 3

1 Continuous Time Systems
1.1 Continuous Time Signals and Sys-

tems
A signal is real-valued function x(t), 0 ≤
t <∞. A system turns input signals, u(t)
into outputs, y(t). Signals may be smooth
and/or continuous. One way to represent
a (smooth) system is as a linear ODE.
The Laplace transform for a continuous
time signal x(t):

x(s) =
∫ ∞

0+
x(t)e−stdt

The Transfer Function of the system is:

G(s) =
y(s)
u(s)

We can also represent the system using
a convolution representation, using the
system’s impulse response, g(t):

y(t) =
∫ ∞

0
g(t − τ)u(τ)dτ

Taking Laplace transforms gives y(s) =
g(s)u(s).
A system, L, is Linear time-invariant (LTI),
iff the following conditions both hold:

1. Linear: If L (u1(t)) = y1(t) and
L (u2(t)) = y2(t), then for any sca-
lars α1,α2:

L (α1u1(t) +α2u2(t))

= α1y1(t) +α2y2(t)

2. Time-invariant: If L(u(t)) = y(t)
then L(u(t + T )) = y(t + T ) for any
time interval, T , i.e., the system’s
response properties do not change
over time.

A system is stable if ”bounded inputs give
bounded outputs.” For a system with a ra-
tional transfer function, G(s), this means
G has no poles in the right-half complex
plane or imaginary axis.
For a stable LTI system, G(s), the steady-
state response for an input u(t) = sin(ωt)
is:

yss(t) = |G(jω)|sin(ωt + ∠(G(jω)))

The Nyquist Stability Criterion allows us
to determine the stability of a closed loop
system by analysing its open loop proper-
ties:

1. Plot the path in the complex plane
of H(jω)G(jω) for −∞ < ω <∞.

2. Let N = number of anti-clockwise
encirclements of the point −1.

3. Then the closed loop system is sta-
ble if and only if N = number of
RHP poles of H(s)G(s).

2 Discrete Time Systems
2.1 Discrete Time Signals and Systems
A discrete time signal is a number se-
quence, indexed from zero: {xk}k≥0 or
{x(kT )}k≥0, where T is the sampling pe-
riod. A discrete time system takes discrete
time signal inputs and produces discrete
time signal outputs.
2.2 The Z Transform
The Z transform of the signal {xk}k≥0 is
defined as:

x(z) = Z [xk] =
∞∑
k=0

xkz
−k

Properties of the Z transform: Let {xk} , {yk}
be discrete time signals whose Z trans-
forms exist:

1. Linearity: For any scalars α,β:

Z [α {xk}+ β {yk}]
= αZ [{xk}] + βZ [{yk}]

2. Time delay: Define the time delay
operation {xk} 7→ {xk−1}.

Z [{xk−1}] = x−1 + z−1x(z)

z−1 is the time-delay operator.
3. Time advance: {xk} 7→ {xk+1}.

Z [{xk+1}] = −zX0 + zX(z)

z is the time-advance operator.
4. Scaling:

Z
[{
rkxk

}]
= x

(
r−1z

)
5. Initial Value Theorem:

lim
z→∞

x(z) = x0

6. Convolution:

{xk} ∗ {yk} =
k∑
i=0

xiyk−i =
k∑
i=0

xk−iyi

Z [{xk} ∗ {yk}] = x(z)y(z)

Inversion of the Z transform: The inver-
se of the Z transform can be computed
by manipulating expressions in the z-
domain and identify standard transforms.

2.3 Z-Transfer Function
A System described by linear difference
equations yk + a1yk−1 + . . . + anyk−n =
b0uk + . . . + bmuk−m and subject to zero
initial conditions yk = uk = 0 for k < 0 is
linear and time-invariant. Such a system
has a z-transfer function:

G(z) =
Y (z)
U (z)

=
b0 + b1z

−1 + . . .+ bmz−m

1 + a1z−1 + . . .+ anz−n

2.4 Pulse Response of LTI Systems
The unit pulse signal, δk in discrete time
is defined as:

δk =
{

1 if k = 0
0 otherwise

Consider the unit pulse input, {uk}k≥0 =
δk = (1,0,0,0, . . .) to a system. The output
of the system {gk}k≥0 = (g0, g1, g2, g3, . . .)
is called the pulse response of the system.
Any discrete-time LTI system can be re-
presented as a convolution. Take a gene-
ral input {uk}k≥0 = (u0,u1,u2,u3, . . .), the
output {yk}k≥0 can be computed as:

yk =
k∑
i=0

uigk−i =
k∑
i=0

uk−igi

{yk} = {gk} ∗ {uk}

Taking Z transforms gives y(z) = g(z)u(z).
The transfer function equals the Z trans-
form of the pulse response.
3 Digital Filters
3.1 FIR, IIR and Causality
Digital filters whose pulse response ter-
minates after a finite number of time
steps are called Finite Impulse Response
(FIR) filters/systems.

{gk} = (g0, g1, g2, . . . gn,0,0, . . . ,0)

Otherwise, the system is called Infinite
Impulse Response (IIR).
FIR systems have transfer functions with
a special form:

G(z) = g0 + g1z
−1 + . . .+ gnz

−n

=
zng0 + . . .+ gn

zn

All of the poles of the transfer function
of an FIR filter are at z = 0. By contrast,
IIR filters can have poles at arbitrary lo-
cations.
Discrete time systems whose pulse re-
sponse is zero for negative time are called

causal. The transfer functions of causal
systems have the form:

G(z) = g0 + g1z
−1 + g2z

−2 + . . .

For causal systems, G(z) is finite as z→
∞.
3.2 Stability
We say that a signal {uk} is bounded if
there exists a positive constant M such
that |uk | < M for all k. A discrete time
system is stable if bounded inputs give
bounded outputs (BIBO stability).
Let G be a discrete time system with a
rational transfer function:

G(z) =
b0z

m + b1z
m−1 + . . .+ bm

zn + a1zn−1 + . . .+ an

For the system to be causal, we must have
m ≤ n.
Conditions for stability of a discrete time
system: Let the pulse response of G be
{gk}k≥0. Then the following are equiva-
lent:

1. G is stable

2. All of the roots, pi , of d(z) satisfy
|pi | < 1.

3.
∑∞
k=0 |gk | is finite.

Suppose p1,p2,p3, . . . are distinct. Then
we can decompose G using partial fracti-
ons:

G(z) =
α1

1− p1z−1 + . . .+
αn

1− pnz−1

Then gk = α1p
k
1 + . . .+αnpkn.

Poles of G(z) define the response to a pul-
se:

In the z-domain any linear filter can be
written as:

A(z)Y (z) = B(z)U (z) +C (z,yi )

C (z,yi ) takes into account the initial con-
ditions of the filter.

lim
k→∞

y(k) = lim
k→∞

Z−1
[
B(z)
A(z)

U (z)
]

Stable roots in A(z) enforce the exponen-

tial decay of Z−1
[
C(z,yi )
A(z)

]
.

Final Value Theorem: Suppose that all the
poles of (z − 1)Y (z) lie strictly inside the
unit circle.

lim
k→∞

y(k) = lim
z→1

(z − 1)Y (z)

Steady-state response to a unit step input
U (z) = z

z−1 :

lim
k→∞

y(k) = lim
z→1

zG(z) = G(1)

4 Frequency Response
4.1 Frequency Response
For digital filters, its frequency response
can be characterized by its response to a
sinusoidal input. For a sampling time of
T and sampled input signal cos(kθ) for
θ = ωT , the output signal y(k) at steady
state is:

yss(k) =
∣∣∣∣G (

ejθ
)∣∣∣∣cos

(
θk + ∠G

(
ejθ

))
The filter amplifies the sinusoidal input

cos(θk) by a factor
∣∣∣∣G (

ejθ
)∣∣∣∣ and shifts its

phase by a factor ∠G
(
ejθ

)
.

By Shannon sampling theorem the samp-
ling frequency f ≥ 2ωmax, which gives
a sampling time T = 2π

f ≤
π

ωmax
. Thus,

θ =ωT ≤ π.
4.2 Bode Diagram
LetG be a digital filter with transfer func-
tion:

G(z) = c

∏m
k=1 (z − zk)∏n
k=1 (z − pk)

The filter amplification and phase shift
can be characterized at each frequency
using Bode diagram:

∣∣∣∣G (
ejθ

)∣∣∣∣ = |c|
∏m
k=1

∣∣∣ejθ − zk ∣∣∣∏n
k=1

∣∣∣ejθ − pk ∣∣∣
When ejθ is close to a pole, the magni-
tude of the response rises (resonance).
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When ejθ is close to a zero, the magni-
tude falls (a null).

∠G
(
ejθ

)
= ∠(c)+

m∑
k=1

∠
(
ejθ − zk

)
−

n∑
k=1

∠
(
ejθ − pk

)
5 Design of Filters
5.1 Ideal Filters
The ideal filter with normalized cutoff
frequency θc =ωcT :

Hd
(
ejθ

)
=

{
1 |θ| ≤ θc
0 |θ| > θc

With sampling time T the max frequency
is ωmax = π

T . Necessarily ωc < ωmax.
Ideal filter can’t be implemented due to
non-causal impulse response hd (k) , 0
for k < 0.
5.2 Realizable Filters
A typical filter specification must specify
maximum permissible deviations from
the ideal:

1. Band edge frequencies or corner
frequencies θp and θs.

2. Maximum passband ripple
20log10(1 + δp) dB.

3. Minimum stopband attenuation
−20log10(δs) dB.

5.3 FIR Filters
FIR filter G can be derived by shift and
truncation at N + 1 samples of the ideal
response {hk}.

G(z) =
N∑
k=0

gkz
−k gk = hk−N/2

FIR filters are simple, feedforward, in-
herently stable and can be realized effi-
ciently in hardware (FFT). Causality is
recovered. Truncation of small samples
has modest impact.

Truncation is equivalent to multiplicati-
on by a window gk = hkwk :

wk =
{

1 0 ≤ k ≤N
0 otherwise

Using duality of multiplication and con-
volution:

G
(
ejω

)
=

1
2π

∫ π

−π
H

(
ejθ

)
W

(
ej(ω−θ)

)
dθ

Transition band symmetric at cutoff ωc.
Transition bandwidth is related to main-
lobe and reduces as N →∞. Ripples of
G are related to the area under sidelobes,
which remains constant as N increases.
The window method:

1. Select a suitable window function
wk .

2. Specify an ideal frequency respon-
se H .

3. Compute the coefficients of the
ideal filter hk .

4. Multiply the ideal coefficients by
the window function to give the fil-
ter coefficients and delay to make
causal.

The ideal bandpass filter:

H
(
ejθ

)
=

{
1 ω1 ≤ θ ≤ω2
0 otherwise

=Hd,ω2

(
ejθ

)
−Hd,ω1

(
ejθ

)
Linear phase G

(
ejθ

)
=

∣∣∣∣G (
ejθ

)∣∣∣∣e−jθ N2 is
achieved if gk = gN−k . The window me-
thod gives linear phase filters. The coeffi-
cients of all window functions satisfies
wk =WN−k .
Design by optimization: Given the ide-
al filter H and the weighting function
W , find the optimal filter G of length
N such that, given E(θ) = W (θ)[H(θ) −
G(θ)], G minimizes the least-squares
error

∫ π
−π E

2(θ)dθ or the max error
sup−π≤θ≤π |E(θ)|.

5.4 IIR Filters
IIR filters have finite polynomial repre-
sentation but infinite impulse response:

A(z)Y (z) = B(z)U (z)

G(z) =
B(z)
A(z)

=
∞∑
k=0

gkz
−k

Discretization by response matching: Ta-
king a continuous time filter with La-
place transfer function Gc(s):

1. Impulse invariance:

G(z) = Z
(
L−1 (Gc(s))t=kT

)
2. Step response invariance:

G(z) =
z − 1
z
Z

(
L−1

(
Gc(s)
s

)
t=kT

)

3. Ramp invariance:

G(z) =
(z − 1)2

T z
Z

(
L−1

(
Gc(s)
s2

)
t=kT

)

Discretization by algebraic transformations:
H(z) =Hc(s)s=ψ(z) where ψ(·) is given by:

1. Euler’s method or Forward diffe-
rence:

s =
z − 1
T

2. Backward difference:

s =
z − 1
zT

3. Bilinear transformation or Tustin’s
transformation:

s =
2
T
z − 1
z+ 1

Backward difference and Tustin transfor-
mations applied to stable continuous sys-
tems result in stable discrete time sys-
tems (all the left plane poles get mapped
into the unit disk). Not necessarily true
for Euler’s method.
Bilinear transform: Stability is preserved
with frequency warping:

G
(
ejθ

)
= Gc(j tan(θ/2))

The frequency response of the analog
filter at ω is mapped into the frequen-
cy response of the digital filter at θ =
2arctan(ω).
Transformation between different filter ty-
pes: Assuming a lowpass prototype with
cutoff at 1:

1. Lowpass to Lowpass: Set s = s
ωc

to
change the cutoff frequency to ωc.

2. Lowpass to Highpass: Set s = ωc
s to

get highpass with cutoff frequency
at ωc.

3. Lowpass to Bandpass: Set s =
s2+ωlωu
s(ωu−ωl )

to get bandpass with

lower cutoff at ωl and upper cu-
toff at ωu .

4. Lowpass to Bandstop: Set s =
s(ωu−ωl )
s2+ωlωu

to get bandstop with

lower cutoff at ωl and upper cu-
toff at ωu .

6 Design of Controllers
6.1 Control Design
Control in open loop:

W (z) = G(z)K(z)

Control design in closed loop:

W (z) =
G(z)K(z)

1 +G(z)K(z)

The Encirclement Property: Number of
counterclockwise encirclements of the
origin by F

(
ejθ

)
as θ increases from 0

to 2π = number of zeros of F(z) inside
the unit circle − number of poles of F(z)
inside the unit circle.
6.2 Closed Loop Stability

Y (z) =
KG(z)

1 +KG(z)
R(z)

Number of counterclockwise encircle-
ments of the origin by 1 + KG

(
ejθ

)
=

number of closed-loop poles inside the
unit circle − number of open-loop poles
inside the unit circle.
Nyquist stability criterion: The closed-
loop system will be stable if (and only
if) the number of counter clockwise en-
circlements of the −1/K point by G

(
ejθ

)
as θ increases from 0 to 2π = the number
of open-loop unstable poles.
Closing the locus: It is customary to in-
dent the path of z around the poles on the
unit circle with a small semi-circular ex-
cursion outside the unit circle. The right
turn in the z-plane then gives a right turn
in the G-plane and a circular arc of large
radius is produced which continues for
mπ radians where m is the multiplicity
of the pole on the unit circle.
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Asymptotes: If there is an open-loop pole
of multiplicity one on the unit circle then
the Nyquist diagram will be asymptotic
to a straight line as it tends to infinity.
7 Interfaces
7.1 Continuous andDiscrete Interfaces
Analog-to-digital converter (ADC): Takes
a continuous time signal u(t), which is
assumed to be continuous, and sample it
to produce the number sequence u(kT ).
T is the sampling time and ADC is also
termed sampler.
Digital-to-analog converter (DAC): Take
the number sequence u(kT ) and produ-
ces a continuous time signal u(t).
Hybrid: G(s) linear continuous system
with discrete input and output before
DAC and after ADC. The transfer functi-
on G(z) from u to y is:

G(z) =
z − 1
z
Z

(
L−1

(
G(s)
s

)
t=kT≥0

)

7.2 Sampling
Sampling of signal with impulse respon-
se g(t):

gs(t) = g(t)
∞∑

n=−∞
δ(t −nT )

= g(t)
1
T

∞∑
n=−∞

ejnω0t ω0 =
2π
T

Periodicity of the sampled signal spec-
trum:

Gs(jω) =
1
T

∞∑
n=−∞

G (j (ω −nω0))

Shannon theorem: A continuous-time si-
gnal g(t) width bandwidth ωmax can be
reconstructed exactly from its sample
version gs(t) if the sampling time satisfies
ωmax < ω0/2 = π/T .
8 Discrete Fourier Transform
8.1 Transform Comparison
Z-transform:

X(z) = Z(x) =
∞∑
k=0

xkz
−k

Discrete time Fourier transform (DTFT):
Fourier transform of a sampled signal,
sampling time T :

xω = DTFT(x) =
∞∑

k=−∞
xke
−jωT k

If xk = 0 for k < 0 then xω = X(z) |z=ejωT .
Discrete Fourier transform (DFT):

xp =
N−1∑
k=0

xke
−j 2π

N pk

For truncated signals xk = 0 for k < 0 and
k ≥N , xp = X(z) |

z=e−j
2π
N p .

Periodicity: xp = xp+N

xp =


e−j

2π
N p·0

e−j
2π
N p·1

...

e−j
2π
N p·(N−1)



T 
x0
x1
...

xN−1


= b(p,N )′x

xp is the projection of x on the base
b(p,N ).

x =


x0
x1
...

xN−1

 =


b(0,N )′
b(1,N )′
. . .

b(N − 1,N )′

x
= B(N )x

Inverse DFT:

xn =
1
N

N−1∑
p=0

xpe
j 2π
N pn

=
1
N
b(−n,N )′x

Using matrix product:

x =
1
N

 b(0,N )′
b(−1,N )′

b(−N + 1,N )′

x
=

1
N
B(N )∗x = B(N )−1x

Properties of the DFT:

1. Periodicity: Xp = Xp+N .

2. Linearity: If z = (x+y) then z = x+y.
3. Symmetry: If x is a real sequence

then xp = x∗−p = x∗N−p.

8.2 Circular Convolution
For signal {xk} and FIR filter with impul-
se response {gk}, the inverse DFT of the
product of the DFTs is the circular convo-
lution of x and g.

yp = gpxp,
{
yp

} iDFT−→ {ym}

ym =
N−1∑
k=0

gkx mod (m−k,N )

mod (k−n,N ) denotes k−n in modulo N
arithmetic.
Filter response of FIR filter with M +1�
N nonzero coefficients using standard li-
near convolution:

ym =
∞∑
k=0

gkxm−k

IfM ≤m < N , then standard convolution
= circular convolution:

∞∑
k=0

gkxm−k =
M∑
k=0

gkxm−k

=
N−1∑
k=0

gkxmod(m−k,N )

8.3 Fast Fourier Transform
Fast Fourier Transform (FFT):

x = FFT(x)

Inverse FFT:

x =
1
N

FFT(x∗)∗

(The End)


