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1 Continuous Time Systems

1.1 Continuous Time Signals and Sys-
tems

A signal is real-valued function x(t), 0 <

t < co. A system turns input signals, u(t)

into outputs, v(t). Signals may be smooth

and/or continuous. One way to represent

a (smooth) system is as a linear ODE.

The Laplace transform for a continuous

time signal x(#):

X(s) = Jm x(t)eStdt
0

+

The Transfer Function of the system is:

We can also represent the system using
a convolution representation, using the
system’s impulse response, g(t):

y<t>:f0 glt - Tu(t)d

Taking Laplace transforms gives (s) =
2(s)(s).

A system, L, is Linear time-invariant (LTI),
iff the following conditions both hold:

1. Linear: If L(uy(t)) = p1(t) and
L(uy(t)) = yo(t), then for any sca-
lars aq, ap:

L(ayuy(t) + azus(t))
=a1p1(t) + axpa(t)

2. Time-invariant: If L(u(t)) = y(t)
then L(u(t+T)) = y(t + T) for any
time interval, T, i.e., the system’s
response properties do not change
over time.

A system is stable if "bounded inputs give
bounded outputs.” For a system with a ra-
tional transfer function, G(s), this means
G has no poles in the right-half complex
plane or imaginary axis.

For a stable LTI system, G(s), the steady-
state response for an input u(t) = sin(w?)
is:

Yss(t) =G (jw)lsin(wt + £(G(jw)))

The Nyquist Stability Criterion allows us
to determine the stability of a closed loop
system by analysing its open loop proper-
ties:

1. Plot the path in the complex plane
of H(jw)G(jw) for —co < w < oo.

2. Let N = number of anti-clockwise
encirclements of the point —1.

3. Then the closed loop system is sta-
ble if and only if N = number of
RHP poles of H(s)G(s).
2 Discrete Time Systems
2.1 Discrete Time Signals and Systems

A discrete time signal is a number se-
quence, indexed from zero: {xj};>( or
{x(kT)}x>0, where T is the sampling pe-
riod. A discrete time system takes discrete
time signal inputs and produces discrete
time signal outputs.

2.2 TheZ Transform

The Z transform of the signal {xi};>( is
defined as:

X(z) = Zxx] = Zxszk
k=0

Properties of the Z transform: Let {xi}, {vi}
be discrete time signals whose Z trans-
forms exist:

1. Linearity: For any scalars «,

Zla{xi)+ B lyk}]
=aZ[{x}]+ BZ [{vk}]

2. Time delay: Define the time delay
operation {x} — {x_1}.

1

Z[{xk-1}] =x_1+27 X(2)

27! is the time-delay operator.
3. Time advance: {xp} — {xXg;1}-
Z[{xks1}] = ~2Xo +2X(2)
z is the time-advance operator.
4. Scaling:

sl =07t

5. Initial Value Theorem:

lim X(z) = xg
Z—00
6. Convolution:

k k
bbelokl = ) ximkei= ) i
i=0 i=0
Z[{xk}* {yid] = x(2)p(2)

Inversion of the Z transform: The inver-
se of the Z transform can be computed
by manipulating expressions in the z-
domain and identify standard transforms.

2.3 Z-Transfer Function

A System described by linear difference
equations Vg + a Vg1 + ... + aApVk_y =
bouy + ...+ byug_y,, and subject to zero
initial conditions vy = uy = 0 for k <0 is
linear and time-invariant. Such a system
has a z-transfer function:

Y(z)  bo+bizl 4. +byz™

G(Z) = %

l+aiz b +... +a,z7"

2.4 Pulse Response of LTI Systems

The unit pulse signal, 0x in discrete time
is defined as:

. 1
ékZ{ 0

Consider the unit pulse input, {t}r>o =
ok =(1,0,0,0,...) to a system. The output
of the system gk}~ = (80,81,82,83,--)
is called the pulse response of the system.
Any discrete-time LTI system can be re-
presented as a convolution. Take a gene-
ral input {u}rso = (1o, uy, u, u3,...), the
output {yk}kzoican be computed as:

ifk=0
otherwise

k k
Yk = Z”igk—i = Z”kfigi
i=0 i=0
vkt =g} * {ug}

Taking Z transforms gives y(z) = g(z)u(z).
The transfer function equals the Z trans-
form of the pulse response.

3 Digital Filters

3.1 FIR, IR and Causality

Digital filters whose pulse response ter-
minates after a finite number of time
steps are called Finite Impulse Response
(FIR) filters/systems.

{gk} = (80,81,82,---81,0,0,...,0)

Otherwise, the system is called Infinite
Impulse Response (IIR).

FIR systems have transfer functions with
a special form:

G(z)=g0+ &1 7l +g,2 "

2o+ gy
T

All of the poles of the transfer function
of an FIR filter are at z = 0. By contrast,
IIR filters can have poles at arbitrary lo-
cations.

Discrete time systems whose pulse re-
sponse is zero for negative time are called

causal. The transfer functions of causal
systems have the form:

G(z)=go +g1:f1 +g2272+...

For causal systems, G(z) is finite as z —
Q.

3.2 Stability

We say that a signal {uj} is bounded if
there exists a positive constant M such
that |ug| < M for all k. A discrete time
system 1is stable if bounded inputs give
bounded outputs (BIBO stability).

Let G be a discrete time system with a
rational transfer function:

bz + b2 v+ by,

G(2)
2 a1zl 4. +a,

For the system to be causal, we must have
m<n.

Conditions for stability of a discrete time
system: Let the pulse response of G be
{8k} k>0- Then the following are equiva-
lent:

1. Gis stable
2. All of the roots, p;, of d(z) satisfy
pil <1.
3. Yoo lgxlis finite.
Suppose p1,p2,p3,... are distinct. Then

we can decompose G using partial fracti-
ons:

Gl2) ai ap

= +...+
1-pyz7! 1-pyzt

Then g = alpll‘+...+anp£‘l.

Poles of G(z) define the response to a pul-
se:

In the z-domain any linear filter can be
written as:

A(2)Y(z) = B(2)U(2) + C(z,7;)

C (z,y;) takes into account the initial con-
ditions of the filter.

o [B)
pm i) = lim 2 [A()

U(z)]

Stable roots in A(z) enforce the exponen-

tial decay of Z~! [CIEXZ(’ZEJ;) ]

Final Value Theorem: Suppose that all the
poles of (z—1)Y(z) lie strictly inside the
unit circle.

lim y(k)=lim(z—-1)Y(z)

k—o0 z—1

Steady-state response to a unit step input
U(z) =

z—

lim y(k) = lim zG(z) = G(1)

k—o0 z—1

4 Frequency Response
4.1 Frequency Response

For digital filters, its frequency response
can be characterized by its response to a
sinusoidal input. For a sampling time of
T and sampled input signal cos(kO) for
0 = wT, the output signal y(k) at steady
state is:

Vss(k) = ‘G(ej6)|cos(6k + AG(ejf)))

The filter amplifies the sinusoidal input
cos(0k) by a factor ‘G (ejf) )‘ and shifts its
phase by a factor /G (ej9 )

By Shannon sampling theorem the samp-
ling frequency f > 2wpm,x, which gives
a sampling time T = 27” < =~ Thus,
0=wT <m.

4.2 Bode Diagram

Let G be a digital filter with transfer func-

tion:
n;:l:1(z—zk)
Glz) = c—x=17" ™~
s A P

The filter amplification and phase shift
can be characterized at each frequency
using Bode diagram:

Wmax

Tz [7° — 2]

j0\| _
|G(€] )‘ = |C| I—IZZI |6j8 —pk|

When /9 is close to a pole, the magni-
tude of the response rises (resonance).
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When ¢/ is close to a zero, the magni-
tude falls (a null).

AG(ejQ) = /(c)+

5 Design of Filters
5.1 IdealFilters

The ideal filter with normalized cutoff
frequency 6, = w,T:

Ha(¢)={ g

With sampling time T the max frequency
is wmax = 7 Necessarily w; < @y
Ideal filter can’t be implemented due to
non-causal impulse response h (k) = 0
for k <0.

5.2 Realizable Filters

A typical filter specification must specify

maximum permissible deviations from
the ideal:

1. Band edge frequencies or corner
frequencies 6, and 6.

2. Maximum  passband
20logy (1 +op) dB.

ripple

3. Minimum stopband attenuation
—20log;o(0s) dB.
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5.3 FIRFilters

FIR filter G can be derived by shift and
truncation at N + 1 samples of the ideal
response {hy}.

N
Gl2) = ngz_k 8 = hk-N/2
k=0

FIR filters are simple, feedforward, in-
herently stable and can be realized effi-
ciently in hardware (FFT). Causality is
recovered. Truncation of small samples
has modest impact.

Truncation is equivalent to multiplicati-
on by a window gi = hjpwg:

[ 1 0<k<N
Wk=)1 0 otherwise
Using duality of multiplication and con-
volution:

G(el) = o j” H(0) W (/@0 do
—TC

Transition band symmetric at cutoff w,.
Transition bandwidth is related to main-
lobe and reduces as N — co. Ripples of
G are related to the area under sidelobes,
which remains constant as N increases.

The window method:

1. Select a suitable window function
Wk

2. Specify an ideal frequency respon-
se H.

3. Compute the coefficients of the
ideal filter hy.

4. Multiply the ideal coefficients bY
the window function to give the fil-
ter coefficients and delay to make

causal.
The ideal bandpass filter:
0\ _ 1 w < 0< w27
H(eJ ) - { 0 otherwise

= Hd,a)2 (ejﬁ) _Hd,a)1 (ejf))

Linear phase G(efe) = ‘G(ele)'eﬁe% is
achieved if gy = gn_. The window me-
thod gives linear phase filters. The coeffi-
cients of all window functions satisfies
wy = Wy _k-

Desifn by optimization: Given the ide-
al filter H and the weighting function
W, find the optimal filter G of length
N such that, given E(0) = W(0)[H(0) —
G(0)], G minimizes the least-squares
error j_nn E%(0)d6 or the max error

SUP_p<0<n IE(O)].

5.4 lIRFilters

IIR filters have finite polynomial repre-
sentation but infinite impulse response:

_B@) Nk
G(z) = A) —I;gkz

Discretization by response matching: Ta-
king a continuous time filter with La-
place transfer function G.(s):

1. Impulse invariance:

G(z) = Z(L7(Ge(s))s=x7)
2. Step response invariance:

SHMEE
z 5 Ji=kT

3. Ramp invariance:
<z—1>22(£1(Gc<s>) )
Tz 2 ikt

Discretization by algebraic transformations:
H(z) = Hc(s)s:zp(z) where ¢(-) is given by:

G(z) =

G(z) =

1. Euler’s method or Forward diffe-
rence:
z-1
T

S =

Re

2. Backward difference:

Re

3. Bilinear transformation or Tustin’s
transformation:
2z-1
sS=—
Tz+1

Re

Backward difference and Tustin transfor-
mations applied to stable continuous sys-
tems result in stable discrete time sys-
tems (all the left plane poles get mapped
into the unit disk). Not necessarily true
for Euler’s method.

Bilinear transform: Stability is preserved
with frequency warping:

G (/%) = Ge(jtan(0/2))

The frequency response of the analog
filter at w is maﬁped into the frequen-
cy response of the digital filter at 6 =
2arctan(w).

Transformation between different filter ty-

pes: Assuming a lowpass prototype with
cutoff at 1:

1. Lowpass to Lowpass: Set s = a% to

change the cutoff frequency to w,.

2. Lowpass to Highpass: Set s = % to

get highpass with cutoff frequency

at w,.

3. Lowpass to Bandpass: Set s =
<2
STtwiwy, .
S, —awy) O et bandpass with
lower cutoff at w; and upper cu-
toff at wy,.

4. Lowpass to Bandstop: Set s =
s(wy—wrp) s
- t t bandst th
T, 'O get bandstop wi

lower cutoff at w; and upper cu-

toff at w,,.

6 Design of Controllers
6.1 Control Design
Control in open loop:

Control design in closed loop:

_ G(2)K(2)
WE = T eoKE

The Encirclement Property: Number of
counterclockwise encirclements of the

origin by F(E/H) as 0 increases from 0

to 27t = number of zeros of F(z) inside
the unit circle — number of poles of F(z)
inside the unit circle.

6.2 Closed Loop Stability

_ KG(2)
Y =1 Txew

Number of counterclockwise encircle-
ments of the origin by 1 + KG(e]f)) =

number of closed-loop poles inside the
unit circle — number of open-loop poles
inside the unit circle.

Nyquist stability criterion: The closed-
loop system will be stable if (and only
if) the number of counter clockwise en-

circlements of the —1/K point by G(eje)

as 0 increases from 0 to 27t = the number
of open-loop unstable poles.

Closing the locus: It is customary to in-
dent the path of z around the poles on the
unit circle with a small semi-circular ex-
cursion outside the unit circle. The right
turn in the z-plane then gives a right turn
in the G-plane and a circular arc of large
radius is produced which continues for
mrt radians where m is the multiplicity
of the pole on the unit circle.

-~
4

R(z)

1 Re

-
U
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Asymptotes: If there is an open-loop pole
of multiplicity one on the unit circle then
the Nyquist diagram will be asymptotic
to a straight line as it tends to infinity.

7 Interfaces

7.1 Continuous and Discrete Interfaces

Analog-to-digital converter (ADC): Takes
a continuous time signal u(t), which is
assumed to be continuous, and sample it
to produce the number sequence u(kT).
T is the sampling time and ADC is also
termed sampler.

Digital-to-analog converter (DAC): Take
the number sequence #(kT) and produ-
ces a continuous time signal u(t).
Hybrid: G(s) linear continuous system
with discrete input and output before
DAC and after ADC. The transfer functi-
on G(z) from u to y is:

_ 2=l (-1 G6)
. z Z(L ( s )tkT>0)

7.2 Sampling
Sampling of signal with impulse respon-
se g(1):

8s(t) =g(1) o(t—nT)
n=—co
1 o« 2
:g(t)? Z elnwot wo = TT(
n=—co

Periodicity of the sampled signal spec-
trum:

1

G(jw) =7 ) Glj(w=nwo))

n=-—oco

Shannon theorem: A continuous-time si-
gnal g(t) width bandwidth wp,,x can be
reconstructed exactly from its sample
version g;(t) if the sampling time satisfies
Wmax <wo/2=1/T.

8 Discrete Fourier Transform

8.1 Transform Comparison

Z-transform:

Discrete time Fourier transform (DTFT):
Fourier transform of a sampled signal,
sampling time T:

[Se]
X, = DTFT(x) = Z xpe J@Tk
k=—c0
If x = 0 for k <0 then X, = X(2) |,_,jeT-
Discrete Fourier transform (DFT):

N-1 o
Xp = Zxkefjﬁpk
k=0
For truncated signals x; = 0 for k < 0 and
k>N,x,=X(z) |z:e’jzﬁn”'
Periodicity: X, =Xp+N

_i2p.0
e ]2N P X0
B einpl X1
Xp =
eI p(N-1) *N-1
=b(p,N)'x

Xp is the projection of x on the base
b(p,N).

X0 b(0,N)’
_ ] b(1,N)
X = . = X
— : f— 4
v b(N-1,N)
= B(N)x
Inverse DFT:
N-1
1 P21
Xn =5 Epefzﬁp"
p=0
! b(-n,N)'x
= ,
Using matrix product:
1 b(O,N)” B
xX=— b(-1,N) X
N1 p-N+1,NY
1
= BON)x= B(N)'%
Properties of the DFT:

1. Periodicity: Yp = §p+N~
2. Linearity:If z= (x+v) thenz = X+7.

3. Symmetry: If x is a real sequence
then X, = Xp=XN_p

8.2 Circular Convolution

For signal {x;} and FIR filter with impul-
se response {gi}, the inverse DFT of the
product of the DFTs is the circular convo-
lution of x and g.

_ _ _ (_\iDFT

9, =8% {7p) — m)
N-1

Ym = ngx mod (m—k,N)
k=0

mod (k—n,N) denotes k—n in modulo N
arithmetic.

Filter response of FIR filter with M +1 <
N nonzero coefficients using standard li-
near convolution:

(o)
Ym = ngxm—k
k=0

If M <m < N, then standard convolution
= circular convolution:

) M
ngxm—k = ngxm—k
k=0 k=0

-1

= Z 8kXmod(m-k,N)
k=

8.3 Fast Fourier Transform
Fast Fourier Transform (FFT):

X = FPT(x)

Inverse FFT:

1
x = —FFT (x*)"
N

(The End)



