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1 Wave-Particle Duality
1.1 Photoelectric E�ect
In this experiment, monochromatic light
of a particular frequency, f , is shone
upon a metal electrode (photocathode),
releasing electrons from the metal with
an energy, E.

Vary light intensity and keep constant
light frequency f , we get the following
results:

1. Photocurrent increases linearly
with increasing light intensity.

2. There is a stopping voltage, V0,
beyond which the current stops.

3. The light intensity does not affect
V0.

Vary light frequency f and keep constant
light intensity, we get the following re-
sults:

1. Current flows only when f exceeds
a certain value. i.e. A minimum f
is required for any electron emissi-
on.

2. Magnitude of the stopping voltage
increases linearly with f . i.e. The
energy of the most energetic elec-
trons increases linearly with f .

The gradient, h, is the same for all metal
photocathodes. This is known as Planck’s
constant. The y-intercept Φ is the work
function of the metal photocathode.
1.2 De Broglie’s Postulate
de Broglie postulated that if waves can
behave like particles, then particles with
mass should behave like waves with a de
Broglie wavelength:

λ =
h
p

The kinetic energy is given by E = p2

2m .

1.3 Electron Di�raction
Let’s consider a beam of X-rays of wave-
length, λ, impinging on a regular crystal
structure at an angle, θ.

Constructive interference occurs when
the difference in path length is nλ,where
n is an integer. A diffraction pattern will
be formed with peaks when:

nλ = 2d sinθ

2 The Schrodinger equation
2.1 Wavefunctions
An electron can still be restricted to a
localised region of space. The wave as-
sociated with an electron moving with a
velocity v might look like a wave packet,
ψ.
If the electron is being accelerated by
an electric field, the position and wave-
length of the wave will change with space

and time, so we can write ψ(x,y,z, t)
which is known as the wavefunction of
the particle.
In terms of complex exponentials, the
formula for a travelling wave is:

ψ(x, t) = Aej(kx−ωt)

Wavenumber k is the spatial frequency
of a wave. The wave packet contains a
distribution of k:

ψ(x, t) =
∑
i

Aie
j(kix−ωi t)

2.2 The Schrodinger Equation
In essence, the Schrodinger equation is a
statement of the conservation of energy
E = T +V .
The total energy, E:

Eψ = j~
∂ψ

∂t

The kinetic energy, T :

Tψ = − ~
2

2m
∂2ψ

∂x2

The time dependent Schrodinger equation
(TDSE) in one dimension:

− ~
2

2m
∂2ψ(x, t)
∂x2 +V (x, t)ψ(x, t) = j~

∂ψ(x, t)
∂t

For the case where the potential, V , is
not varying with time, and assuming that
the wavefunction is separable, such that
ψ(x, t) = Ψ (x)Θ(t).
The time independent Schrodinger equati-
on (TISE) in one dimension:

− ~
2

2m
∂2Ψ

∂x2 +VΨ = EΨ

2.3 Postulates
Basic postulates of quantum mechanics:

1. For a particle in a potential, there
is an associated wavefunction, ψ
which determines everything that
can be known about the particle.

2. The wavefunction satisfies the
Schrodinger equation at all times.

3. The wavefunction is a complex,
single-valued function of space co-
ordinates and time and must be
continuous, as must ∂ψ/∂x,∂ψ/∂y
and ∂ψ/∂z.

4. The probability, P (x,y,z) of finding
the particle in a volume element
∂x∂y∂z about a point (x,y,z) is:

P (x,y,z) = |ψ|2∂x∂y∂z

2.4 The Uncertainty Principle
Heisenberg’s uncertainty principle: If ∆p
and ∆x are the uncertainties in momen-
tum and position respectively, then:

∆x∆p ≥ ~

2

To measure the wavelength with infinite
accuracy, we would need an infinitely ex-
tended wavepacket. Similarly, as energy
is related to frequency from E = hf , and
a sufficient length of time is required to
accurately measure a frequency:

∆E∆t ≥ ~

2

2.5 Particle in an Infinite Potential Well
We need to find a solution to the TISE
with the potential term given by:{

V = 0 for 0 < x < L
V =∞ for x < 0,x > L

Outside the well, V = ∞, and the TISE
only physically realistic solution Ψ (x) =
0. Inside the well, the TISE has the gene-
ral solution Ψ = Acos(kx) +Bsin(kx).
For the wavefunction to be continuous
and single-valued, the wavefunctions for
inside and outside the boundary must
be identical at the boundary. The total
probability: ∫ L

0
|Ψ |2dx = 1

The normalised solution:

Ψ =

√
2
L

sin
(πn
L
x
)

We can see that quantum mechanics only
permits the electron to exist in a limi-
ted number of states. n is known as a
quantum number and it defines the state
uniquely.
The energy of the electron in any state is:

E =
π2n2

~
2

2mL2

Energy is quantised and is never zero. The
lowest possible energy state, associated
with n = 1, is known as the ground state.

3 The Hydrogen Atom
3.1 The TISE in Three Dimensions
From Gauss’ law of electrostatics, we
know the electrostatic potential, V , vari-
es with distance, r, from the proton as:

V (r) =
−e2

4πε0r
In 3D the TISE becomes:

− ~
2

2m
∇2Ψ +VΨ = EΨ

The wavefunction, Ψ (r,θ,φ), may be se-
parated into functions of r,θ and φ:

Ψ (r,θ,φ) = R(r)Θ(θ)Φ(φ)

The Φ(φ) component has the form:

Φ(φ) = Aejmlφ

ml is an integer called the magnetic quan-
tum number.
The Θ(θ) component is the set of Legend-
re functions:

Θ(θ) = Pl,ml (θ)

l is another quantum number, known as
the azimuthal quantum number or orbi-
tal angular momentum quantum number. l
must be a positive integer and |ml | ≤ l.
The magnitude of the electron’s orbital
angular momentum, L, is related to l by:

L =
√
l(l + 1)~

The component of the electron’s orbital
angular momentum along the z direction,
LZ , is related to ml by:

LZ =ml~

The R(r) component, the radial compo-
nent, has the form:

R(r) =
fn,l (r)
r

exp
(−r
a

)
fn,l (r) is a polynomial function of r who-
se form depends on l and a new quantum
number, n, known as the principal quan-
tum number. n is a positive integer and
n > l.
For the one electron system here, it is the
value of n alone which determines the
energy of the electron:

En =
−e4m

8ε2
0h

2n2
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3.2 Pauli Exclusion Principle
The Pauli exclusion principle states that:
In a multielectron system there can ne-
ver be more than one electron in the same
state.
Electrons actually have a fourth quan-
tum number, ms, which is known as spin.
For electrons:

ms = ±1
2

The magnitude, S, of the spin angular
momentum of the electron is given by:

S =

√
1
2

(
1 +

1
2

)
~ = 0.87~

The component of the spin angular mo-
mentum in the z direction, Sz, is determi-
ned by ms:

SZ =mS~ = ±1
2
~

4 Electron Energy Bands
4.1 Energy Band Formation
If the two Si atoms are brought close to-
gether such that the two 3p wavefunc-
tions overlap, then the Pauli exclusion
principle is invoked which states that the
two electrons cannot exist in the same 3p
state.
Therefore, the two wavefunctions beco-
me perturbed and their two energy le-
vels split, thereby making them distinct
states.

An sp3 hybridisation is said to have occur-
red.
The two s states and six p states have be-
come four bonding states, which are com-
pletely filled with the Si atom’s four elec-
trons that take part in covalent bonding

with its four neighbours, and four empty
antibonding states.
The full band of bonding states is known
as the valence band (VB) and the empty
band of antibonding states is known as
the conduction band (CB).
4.2 Band Structure and Conduction
Consider the band structure of bulk Si,
which is a semiconductor.

At room temperature, the energy gap bet-
ween the top of the VB and the bottom of
the CB, Eg , is small enough for some elec-
trons to be excited into the antibonding
CB states.
The electron has escaped from the bond
and is free to conduct. The vacancy in
the VB can also contribute to conduction.
We have created an electron-hole pair.
For a pure semiconductor (intrinsic se-
miconductor) the number of electrons in
the CB, n, and holes in the VB, p, must
be equal at any time. The intrinsic carrier
concentration ni = n = p.
In an insulator the CB and VB are sepa-
rated by an energy gap which is large. So,
an insignificant number of electrons are
excited into the CB even at room tempe-
rature.
In the case of metals, either the bands
overlap or are partially filled. Electrons
can move into new states with essenti-
ally no change in energy and take part
in conduction. The conductivity will de-
crease with temperature as rising lattice
vibrations act to increase the scattering
of electrons moving through the crystal
lattice.
4.3 Free Electron Model
We assume a number of electrons moving
independently in a square well potential.

The solution to the TISE is a plane wave:

Ψ = Aexp(jk.r)exp(−jωt)

k =
(
kx, ky , kz

)
is the wavevector of the

electron and is related to its momentum,
p, using the de Broglie postulate:

p = ~k

The wavenumber, k, is the magnitude of
the wavevector, k :

k =
√
k2
x + k2

y + k2
z

Substituting these boundary conditions
into Ψ = Aexp(jk.r) imposes the conditi-
on:

kx = ±2π
Lx
nx ky = ±2π

Ly
ny kz = ±2π

Lz
nz

Integers nx,ny and nz, are analogous to
the principal quantum number, n.
We can map out these wavevectors as a
grid of points in k-space. An electron can
exist in any one of a number of discrete
states in k-space. This is also known as
momentum space because p = ~k.
The energy of the electron in any state is:

E =
~

2|k|2

2m
=

~
2k2

2m

Wavevectors of the same magnitude ha-
ve the same energy, forming spherical
shells.
4.4 The Density of States
Each time we increase nx,ny or nz by one,
we obtain a new point in k-space. We can
have two electrons at each point, so the
density of states in k-space is:

2LxLyLz
8π3 =

2V
8π3

The number of states within a spherical
shell with |k| between k and k + dk is:

n(k)dk =
2V
8π3 4πk2 dk =

V

π2 k
2 dk

The density of states as a function of ener-
gy, E:

g(E)dE =
V

2π2
~

3 (2m)
3
2 E

1
2 dE

4.5 Fermi-Dirac Statistics
At absolute zero, T = 0K, the N states
with the lowest energies will be occupied.
The energy of the highest filled state is
called the Fermi level, EF .
Therefore, the probability that a state is
occupied depends on whether it lies abo-
ve or below the Fermi level:

f (E) =
{

1, E < EF
0, E ≥ EF

N states will be occupied:

N =
∫ ∞

0
g(E)f (E)dE =

∫ EF

0
g(E)dE

The Fermi level, EF , can be evaluated
knowing N :

EF =
~

2

2m

(
3π2N

V

) 2
3

As the temperature rises above absolu-
te zero, some electrons within an energy
∼ kT of the Fermi level have sufficient
energy to enter states above EF .
The number of particles, n, with a par-
ticular energy, E, is determined by the
Boltzmann distribution:

n ∝ exp
(−E
kT

)
The probability that a state is occupied
is given by the Fermi function, f (E):

f (E) =
1

exp
(E−EF
kT

)
+ 1

The Fermi level, EF , marks the energy at
which there is a 50% probability that a
state is occupied. At absolute zero, the
Fermi level is also called the Fermi ener-
gy.
The number of electrons, n, with a par-
ticular energy, E, is the product of the
density of states and the Fermi function.

The total number of free electrons, N, is
then:

N =
∫ ∞

0
n(E)dE =

∫ ∞
0
g(E)f (E)dE

4.6 Nearly Free Electron Model
Consider a simple situation in one di-
mension where atoms have a spacing a:

Consider a plane wave in one dimension:

ψ = Aexp(jkx)exp(−jωt)

We know from optical systems, that a
wave can pass through a diffraction gra-
ting of spacing a, unless a is an integer,
n, number of half wavelengths (Bragg’s
Law with θ = 90◦):

a =
nλ
2

If the wavelength of the electron does not
meet the Bragg reflection criteria, then
the electron will propagate as a travelling
wave through the crystal.
If the wavelength of the electron does
meet the Bragg reflection criteria, then it
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will be Bragg-reflected and forms a stan-
ding wave.
In terms of the wavenumber, Bragg re-
flection occurs when:

k = ±nπ
a

There are two possible scenarios:

1. There is a low probability of the
electron being near the nuclei, out-
side the potential well associated
with any one nucleus, and such
a state will have a higher energy,
E = Efree + ∆E associated with it
than the free electron theory pre-
dicts.

2. There is a high probability of the
electron being near the nuclei, in
the bottom of the potential wells,
and such a state will have a lower
energy, E = Efree −∆E, associated
with it.

Therefore, there is an energy gap, Eg =
2∆E between the two states.
The effect of the periodic lattice has been
to open up periodic energy gaps (band
gaps) in the E − k diagram.

Block’s theorem: The wavefunction of an
electron in a periodic potential is a plane
wave times a function with the periodici-
ty of the lattice.
It is impossible to distinguish between
an electron with a wavenumber k and
one with a wavenumber k +n2π/a where
n is an integer. We can move any point on
an E − k diagram by ±n2π/a along the k
axis without changing the physical signi-
ficance as the two states are equivalent.

Condense all the information into the
first Brillouin zone:

Semiconductors where the bottom of the
conduction band has the same k as the
top of the valence band are known as di-
rect gap semiconductors an electron only
requires an change in energy to make a
transition between the two.
More commonly, semiconductors are in-
direct where the conduction band mini-
mum occurs at a different k to the valence
band maximum. To transition from the
VB to the CB, an electron will require
energy Eg and the addition of momen-
tum.
4.7 E�ective Mass
An electron in a periodic potential be-
haves differently to a free electron. The
change in response is accounted for by
the concept of an effective mass.
In terms of wave theory, the electron’s
velocity is given by

v =
∂ω
∂k

=
1
~

∂E
∂k

This defines the group velocity of a wave.

F =m∗
dv
dt

=
dp
dt

The effective mass of the electron can be

found from this expression:

m∗ = ~
2
(

d2E

dk2

)−1

5 Electrons and Holes
5.1 The Simplified Band Diagram
We can ignore all permanently full bands
below the VB and all permanently empty
bands above the CB.
There are three ways of transferring elec-
trons into the CB:

1. Thermal excitation: Some electrons
attain enough thermal energy ac-
cording to the Fermi Dirac distri-
bution function.

2. Atomic substitution: An atom is
substituted for one of a different
element. This is known as doping.

3. Photoexcitation: Absorption of a
photon (i.e. electromagnetic radia-
tion) provides energy.

The energy of the gap is:

Eg = EC −EV

5.2 Holes
If we remove a single electron from the
VB with a wavenumber ke then an empty
state is left behind in the VB with wave-
number −ke. Therefore, we can consider
this absence of an electron to be a hole
state of wavenumber kh = −ke.
If the energy of the electron occupying
the state before removal was Ee, then the

energy of the hole, Eh = −Ee. Hence, the
group velocity of the hole, vh, is:

vh =
1
~

∂Eh
∂kh

=
1
~

∂ (−Ee)
∂ (−ke)

= ve

The effective mass of the hole is:

mh = ~
2

d2Eh
dk2
h

−1

= −me

The application of an electric field, ε, will
cause a change in hole momentum, ph.

F = ~

dkh
dt

= −(−eε) = eε

The hole behaves as though it has a posi-
tive charge of +e.
5.3 Charge Carrier Populations
Two important parameters in the electri-
cal characterisation of a semiconductor
are the number density of electrons in
the CB, n, and the number density of ho-
les in the VB, p.
Density of states in the CB:

g(E)dE =
V

2π2
~

3 (2m∗e)
3
2 (E −EC )

1
2 dE

Density of states in the VB:

g(E)dE =
V

2π2
~

3

(
2m∗h

) 3
2 (EV −E)

1
2 dE

The probability, f (E), that a state is occu-
pied by an electron is given by the Fermi
function.
The probability, fp(E), that a state is oc-
cupied by a hole, is 1− f (E):

fp(E) = 1− 1

e
( E−EF
kT

)
+1

=
1

e

(
−(E−EF )
kT

)
+1

If EC − EF >> kT , occupancy of the CB
is low. Therefore, the Fermi function can
be approximated by the Boltzmann dis-
tribution:

f (E) = e

(
−(E−EF )
kT

)
The number density of electrons in the
CB can be written as:

n =NCe

(
EF−EC
kT

)
NC is known as the effective density of
states in the conduction band.

NC = 2
(
m∗ekT

2π~2

) 3
2

The number density of holes in the VB
can be written as:

p =NV e

(
−(EF−EV )

kT

)
NV is known as the effective density of
states in the valence band.

NV = 2
(
m∗hkT

2π~2

) 3
2

5.4 The Law of Mass Action
The product of the electron and hole den-
sities is a constant:

np =NCNV e

( −Eg
kT

)
= n2

i

Eg = EC −EV is the band gap energy and
ni is known as the intrinsic carrier density.

ni =
√
NCNV e

( −Eg
2kT

)
The intrinsic carrier density, ni , is a pro-
perty of a given semiconductor material.
5.5 Intrinsic Semiconductor
If we have a pure (intrinsic) semiconduc-
tor, we know that we can only create an
electron in the CB by creating a hole in
the VB.

n = p = ni =
√
NCNV e

( −Eg
2kT

)
Let EFi denote the Fermi level in an in-
trinsic material, the intrinsic Fermi level.

EFi =
EC +EV

2
+

3kT
4

ln
(
m∗h
m∗e

)
Usually EC +EV >> kT and so for intrin-
sic material:

EFi =
EC +EV

2
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5.6 Charge Carrier Mobility
There is a linear relationship between
carrier drift velocity, v, and electric field:

v = µε

The constant of proportionality, µ,
known as the carrier mobility, is:

µ =
qτ

m∗

Mobility has units of m2 V−1 s−1, and
is related to the current density from
Ohm’s Law according to:

J = nq〈v〉 = nqµε = σε

The conductivity, σ, is therefore directly
dependent on the carrier mobility by:

σ = nqµ = n
q2τ

m∗

For a semiconductor with both electrons
and holes:

σ = neµe + peµh

For an intrinsic semiconductor:

σ = e (µe +µh)
√
NCNV e

( −Eg
2kT

)

6 Doping
6.1 Extrinsic Semiconductor
The type of conduction (n-type or p-type)
can be controlled by deliberately adding
tiny amounts of impurities into the cry-
stal lattice.
The impurity atoms are known as do-
pants and the addition of dopants is
known as doping. Semiconductors that
have been doped are called extrinsic.
There are two types of dopants:

1. Donors are impurity atoms used to
achieve n-type doping.

2. Acceptors are impurity atoms used
to achieve p-type doping.

6.2 Doping
The aim of n-type doping is to increase
the number of electrons in the CB.
Silicon is a group IV element(
1s22s22p63s23p2

)
.

1. To n-dope, we add a donor do-
pant impurity from group V: phos-
phorous

(
1 s22 s22p63 s23p3

)
, ar-

senic or antimony.

2. To p-dope, we add an acceptor im-
purity from group III: boron, alu-
minium.

Group V impurities generate an energy
level, known as the donor level, ED , in
the gap.
The acceptor level (EA) will be empty at
0 K. As the temperature rises, electrons
are easily excited to the acceptor level
(EA) from the VB.

The donor donates electrons to the CB
without the creation of a hole in the VB.
Therefore this doping achieves an n-type
semiconductor.
Group III impurities generate an energy
level, known as the acceptor level, EA, in
the gap.
The acceptor level (EA) will be empty at
0 K. As the temperature rises, electrons
are easily excited to the acceptor level
(EA) from the VB.

The removal of the electron from the VB
creates a vacant VB state for electrons to
jump into: the hole. This excitation oc-
curs without the creation of an electron
in the CB. Therefore this doping achieves
a p-type semiconductor.
6.3 Majority and Minority Carriers
In n-type material the electrons are cal-
led majority carriers and the holes are
called minority carriers.(

p = n2
i /n

)
In p-type material the holes are called
majority carriers and the electrons are

called minority carriers.(
n = n2

i /p
)

6.4 Doping in III-V Semiconductors
We can dope III-V semiconductors such
as GaAs using transition metals and
group IV elements. These act as p-type or
n-type dopants depending on their che-
mical preference for substituting for the
Ga or the As.
At 0 K, all donor levels will be occupied
and no e− will be in the CB while all ac-
ceptor levels will be empty with no holes
in the VB. As T increases, e− in the donor
level enter the CB and e− in the VB can
enter the acceptor level. At high T ,e− can
get all the way from the VB into the CB.

We define:

• NA density of acceptor atoms

• ND density of donor atoms

• nD density of unionised donor
atoms (no charge)

• pA density of unionised acceptor
atoms (no charge)

When a donor is ionised, it loses an
electron and becomes positively charged.
The semiconductor remains electrically
neutral.
When an acceptor is ionised, it gains an
electron and becomes negatively charged.
The semiconductor remains electrically
neutral.

p+ (ND −nD ) = n+ (NA − pA)

At room temperature, we can assume all
donors will be ionised nD = pA = 0.
For n-type material, we assume n =ND :

EF = EC − kT ln
(
NC
ND

)

For p-type material, we assume p =NA:

EF = EV + kT ln
(
NV
NA

)

Temperature dependence of charge carri-
er distribution:

6.5 Hall E�ect
For p-type semiconductors, q is positi-
ve for holes and hole current occurs in
the same direction as classical current,
Jx = pevx.

At equilibrium, the force which the elec-
tric field Ey exerts on the carriers is equal

and opposite to the force exerted by the
magnetic field Bz.

qEy = qvxBz

Therefore a voltage VH appears across
the width of material w:

VH = Eyw

The Hall coefficient, RH , is defined as:

RH =
Ey
JxBz

=
1
pe

For n-type material, the polarity of VH is
reversed and:

RH = − 1
ne

7 The pn Junction Diode
7.1 Junction Structure
This diffusion of electrons and holes ra-
pidly lowers the amount of mobile char-
ge on either side of the junction to leave a
zone which is depleted of mobile carriers
but has a background of ionised impurity
atoms known as the depletion region.

The charge imbalance caused by these
ionised impurity atoms sets up a potenti-
al difference which eventually prevents
further e − h annihilation, and an equili-
brium is reached.
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7.2 Built In Potential
Abrupt junction model:

1. The junction is abrupt.

2. Recombination in the junction is ne-
gligible.

3. No fields exist outside the juncti-
on.

The depletion region is electrically char-
ged and the charge adjusts (by a change
in the depletion region width) to align
the p-type and n-type Fermi levels.

The equilibrium potential difference
(contact potential):

eV0 = Ef n −Ef p = kT ln

NAND
n2
i


7.3 Depletion Region Width
The charge neutrality equation:

eNDxn = eNA
(
−xp

)
xn and −xp are the widths of the depleti-
on regions on the n and p sides, respec-
tively.
The Poisson equation states that:

∇2V =
−ρ
ε0εr

=
eNA
ε0εr

The total barrier voltage (barrier potenti-
al) is:

V0 =
e

2ε0εr

(
NAx

2
p +NDx

2
n

)

The total width of the junction:

w = xn − xp =
(2ε0εrV0

e

) 1
2


 NA
NAND +N2

D


1
2

+

 ND
NAND +N2

A


1
2


Given NA >> ND the equation can be
simplified to:

w =
(

2ε0εrV0
eND

)1/2

7.4 Junction Capacitance
The charge on the n-side is:

Q = eNDxn = (2ε0εreV0)
1
2

(
NAND
NA +ND

) 1
2

The depletion region of the p−n junction
contains no mobile carriers and acts as a
capacitor.

Cd =
dQ
dV

=
(
ε0εreNAND

2V0 (NA +ND )

) 1
2

=
ε0εr
w

7.5 Application of a Bias
If we apply a positive voltage to the p-
side of a p − n junction then the energy
of the electrons on the n-side increases
while the energy of the electrons on the
p-side decreases.

If we apply a negative voltage to the p-
side of a p − n junction then the energy
of the electrons on the n-side decreases
while the energy of the electrons on the
p-side increases.

The width w of the depletion region un-
der the externally applied bias Vapp:

w =

2ε0εr
(
V0 −Vapp

)
e


1
2


 NA
NAND +N2

D


1
2

+

 ND
NAND +N2

A


1
2


The capacitance of the biased junction:

Cd =

 ε0εreNAND

2
(
V0 −Vapp

)
(NA +ND )


1
2

This is known as a varactor, as the ca-
pacitance is dependent on the applied
voltage.
7.6 Inhomogeneous Semiconductors
If excess carriers are introduced locally,
there will be a non-uniform distribution
of carriers and such materials are known
as inhomogeneous semiconductors.
Einstein Relation:

De
µe

=
Dh
µh

=
(
kT
e

)

7.7 Continuity Equation
The separate effects of carrier generati-
on, recombination, diffusion and drift can
be conveniently summarised in the equa-
tion known as the Continuity (Master)
Equation.
The total rate of change in the excess elec-
tron concentration in the volume is given
by:

∂(∆n)
∂t

= −∆n
τe

+µeε
∂(∆n)
∂x

+De
∂2(∆n)
∂x2

= −∆n
τe

+
1
e
∂
∂x
Je

This is the continuity equation for elec-
trons, and for holes the corresponding
equation is:

∂(∆p)
∂t

= −
∆p

τh
−µhε

∂(∆p)
∂x

+Dh
∂2(∆p)
∂x2

= −
∆p

τh
− 1
e
∂
∂x
Jh

7.8 Current Flow
Consider the curent flow in a p+n junc-
tion in which the p-side is more heavily
doped that the n-side.

Consider a p+n junction where most of
the current is carried by holes in the n-
type semiconductor. By applying a for-
ward bias, we lower the barrier potential
to allow more holes to surmount the bar-
rier.

The injected minority carrier concentra-
tion of holes at position x = 0 is:

p(0) =NA exp
{
−e (V0 −V )

kT

}
= pn0 exp

( eV
kT

)
The current flow associated with a junc-
tion is limited by how these minority car-
riers are removed from the edge of the
depletion region.
We will make the following assumptions:

1. The injected minority carrier con-
centration is much less than the
majority carrier concentration (the
low injection case).

2. No recombination takes place in
the depletion region.

3. There are negligible fields outside
the depletion region.

The carrier diffusion length Lh =
(Dhτh)1/2.

p − pn0 = pn0

[
exp

( eV
kT

)
− 1

]
exp

(
−x
Lh

)

The total current is given by the sum of
the electron and hole currents:

Minority carrier injection: Forward cur-
rent carried by recombination of excess
minority carriers.
Minority carrier extraction: Reverse satu-
ration current due to drift of minority
carriers over depletion region.
The ideal diode law (Shockley equation):

I = IS
[
exp

( eV
kT

)
− 1

]
IS can be written in terms of the hole
lifetime of the diffusion coefficient:

IS = area

e (DeLe
)
n2
i

NA
+ e

(
Dh
Lh

)
n2
i

ND


= area

[
e

(
Le
τe

)
np0 + e

(
Lh
τh

)
pn0

]
For the p+n junction where NA >> ND ,
the prefactor IS becomes:

IS = area

e (DhLh
)
n2
i

ND


8 Metal-Semiconductor Junctions
8.1 Metal-Metal Junctions
Consider two metals, A and B with diffe-
rent Fermi levels (EFA,EFB) and different
work functions (the difference between
the Fermi level and the vacuum level) ΦA
and ΦB.
The contact potential eVa = ΦA −ΦB will
exist across the junction:
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8.2 Metal-Semiconductor Junctions
The relative magnitudes of the work
functions of the metal and semiconduc-
tor are Φm and Φsc respectively.
For an n-type semiconductor in contact
with a metal:

1. If Φm > Φsc then we get a rectify-
ing contact called a Schottky Barri-
er (conduction only occurs when a
positive bias is applied to the me-
tal with respect to the semiconduc-
tor)

2. If Φm < Φsc then we get an Oh-
mic contact (conduction occurs for
both senses of bias)

For an p-type semiconductor in contact
with a metal:

1. If Φm < Φsc then we get a Schottky
Barrier (negative bias on the metal
allows conduction)

2. If Φm > Φsc then we get an Oh-
mic contact (conduction occurs for
both senses of bias)

8.3 Schottky Barrier
For an n-type semiconductor-metal junc-
tion, a rectifying Schottky barrier will be
formed if Φm > Φsc.
The transfer of electrons from the semi-
conductor to the metal will continue un-
til the Fermi levels align. A depletion re-
gion has formed.

The term χsc is known as the electron af-
finity, and it is the energy required by an
electron at the bottom of the conduction
band to escape from the semiconductor
into the vacuum

eΦSC = eχSC + (EC −EF )

The contact potential is:

V0 =
eNDw

2

2ε0εr
=

ΦM −ΦSC
e

The depletion width is:

w =
(

2ε0εr (ΦM −ΦSC )
e2ND

)1/2

We can also find the capacitance per unit
area:

C =
(ε0εreND

2V

)1/2
=
ε0εr
w

8.4 Biased Junction
The potential barrier at the junction acts
as a rectifier. The barrier is e (V0 −Va)
where Va is the forward bias applied to
the metal.

8.5 Current Flow in a Schottky Barrier
When a negative bias is applied to the
metal in a Schottky Barrier Diode:

1. The forward current IF is reduced
as the barrier to electron flow from
the semiconductor to the metal is
increased.

2. The reverse current IR remains the
same as the barrier to electron flow
from the metal to the semiconduc-
tor remains e (Φm −χsc).

The net current flow across the junction
is I = IF− IR.

The limit to current flow is now deter-
mined by how fast the electrons can get
from the semiconductor to the metal.
The Schottky barrier diode is a unipolar
device.
Thermionic Emission Theory: Assume that
the mobility of the electrons is such that
they can get across the barrier as fast as
they are emitted.
The net current from the semiconductor
to the metal is:

J = A∗T 2 exp
(
−eΦb
kT

)[
exp

( eVa
kT

)
− 1

]
8.6 Ohmic Contacts
For an n-type semiconductor-metal junc-
tion, an Ohmic contact is formed when
Φm < Φsc.

This type of junction conducts well for
both senses of applied bias.

9 The BJT & HBT
9.1 Bipolar Junction Transistor
The bipolar junction transistor (BJT) con-
sists of two pn junctions back to back,
with one region common to both.

Band bending takes place at each depleti-
on region to ensure that the Fermi energy
is constant throughout the device.

9.2 Applying a Bias
Applying a positive bias to both V1 and
V2:

By putting the emitter-base junction in-
to forward bias, a large hole current will
flow across the junction from the emitter
to the base.

1. Inside the base, the holes find
themselves in a region where the
majority carriers are electrons, and
some holes will recombine with
electrons.

2. A large number of holes are in-
jected into the n-region from the
emitter and a hole current flows
into the collector.

3. Normally only a small reverse bias
current will flow as there are few
electrons on the p-side and holes
on the n-side available.

4. An electron current must be sup-
plied by the base to meet the re-
combination loss

5. There will be a small electron cur-
rent in the reverse direction sup-
plied by the base.

If the width of the undepleted region of
the base Wb is much less than the diffusi-
on length of the holes Lh =

√
(Dhτh) then

most holes will cross the base without
recombination.
9.3 BJT Parameters
Due to recombination in the base, not all
holes entering the emitter as current IEp
get into the collector and contribute to
IC . The proportion which do is called the
base transport factor:

B =
IC
IEp

The total emitter current, IE , is made
up from the hole component, IEp, and
the electron component, IEn, due to elec-
trons injected from the base to the emit-
ter. We define the emitter injection effi-
ciency:

γ =
IEp

IEp + IEn

The relation between the total emitter
and collection currents is:

IC
IE

=
BIEp

IEn + IEp
= Bγ ≡ α
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The product Bγ is defined as the current
transfer ratio, α.
The relation between the base and collec-
tor currents is:

IC
IB

=
BIEp

IEn + (1−B)IEp

The base to collector current amplification
factor is:

β ≡ IC
IB

=
Bγ

1−Bγ
=

α
1−α

9.4 Base Di�usion
The hole concentration as a function of
position in the base:

∆pn(x) = ∆pn(0)

exp((Wb − x) /Lh)− exp((x −Wb) /Lh)
exp(Wb/Lh)− exp(−Wb/Lh)

The result is almost a straight line, with
the deviation being due to recombina-
tion, which decreases when Wb << Lh
where Lh =

√
(Dhτh) is the hole diffusion

length.
9.5 Terminal Currents
Assuming that the hole current domina-
tes at these terminals whereA is the cross
sectional area of the base:

IE ≈
eADh∆pn(0)

Lh
coth

(
Wb
Lh

)
IC ≈

eADh∆pn(0)
Lh

csch
(
Wb
Lh

)
IB = IE − IC ≈

eADh∆pn(0)
Lh

tanh
(
Wb
2Lh

)

The base transport factor depends on the
transistor design:

B =
IC
IEp

= sech
(
Wb
Lh

)
≈ 1−

W 2
b

2L2
h

The emitter injection efficiency is:

γ =
IEp

IEp + IEn
=

1

1 +
(De
Dh

)(Wb
Le

)(ND
NA

)
9.6 Heterojunction Bipolar Transistor
In order to gain a high γ , we need the
doping density in the base to be much
less than in the emitter. This increases
the resistance of the base, R, and limits
the maximum operating frequency.
In the heterojunction bipolar transistor
(HBT) we use a different semiconductor
with a large band gap for the emitter
compared with the base and collector.

10 The JFET, MESFET & HEMT
10.1 Junction Field E�ect Transistors
The Field Effect Transistors (FET) are vol-
tage controlled and unipolar devices.
The Junction Field Effect Transistor
(JFET) consists of a conductive channel
between a source and a drain (ohmic)
contact. The third terminal, the gate,
forms a rectifying junction with the chan-
nel.

If we maintain VGS = 0, as VDS is increa-
sed, IDS increases approximately linearly
until the depletion regions almost meet
(Ohmic region).
The pinch-off effect: The channel width
will have decreased and the resistance
of the channel, rd , increased to such an
extent that further increase in VDS has
no significant effect upon IDS , which re-
mains at its saturated level (saturated re-
gion).

The voltage, Vp, required to pinch of the
channel assuming uniform ND :

−Vp = VDS −VGS =
h2eND
8ε0εr

The gate voltage, VGS , alters the width
of the gate-channel depletion region:

The I −V characteristics of the JFET:

IDS =
dhNDeµeVp

LVDSVp − 2
3

(
VGS
Vp

) 3
2

+
2
3

(
VGS −VDS

Vp

) 3
2


The saturated current can be found at
VDS = VGS −Vp. When VGS = 0:

IDSS =
−dhNDeµeVp

3L
=
dh3N2

De
2µe

24Lε0εr

The small signal mutual transconductan-
ce in the saturated region is:

gm =
∂IDS (sat)
∂VGS

=
dhNDeµe

L

1−
(
VGS
Vp

)1/2


10.2 Metal Semiconductor Field E�ect
Transistor

The Metal Semiconductor Field Effect
Transistor (MESFET) uses a reverse bia-
sed Schottky barrier to create a depletion
region in a conducting channel instead
of a pn junction.

10.3 High Electron Mobility Transistor
The High Electron Mobility Transistor
(HEMT) is a variant on the MESFET.

The doped, wide bandgap material pro-
vides a source of electrons which accu-
mulate in a two dimensional layer in
the GaAs. This is referred to as two-
dimensional electron gas (2-DEG).
11 The MOSFET
11.1 MOS Capacitor
The MOS capacitor structure:

Consider an n-type semiconductor whe-
re there is no difference between the me-
tal and semiconductor work functions,
φm = φsc.

This flat band condition occurs when

φm −φsc = φm −
[
χsc +

EC
2
− (EFn −EFi )

]
= 0

11.2 Accumulation
When a positive bias is applied to the
gate, the accumulation of electrons will
cause the conduction and valence bands
in the semiconductor to bend down and
a surface potential, Vs, will exist.
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11.3 Depletion
If a negative bias is applied to the gate,
the electrons are repelled away from the
surface by the applied electric field and
we have a depletetion region.
If Vs is the surface potential of the semi-
conductor then

Vs = εw =
eNDw

2

2εoεr

The voltage applied to the metal gate is
Va and the voltage drop across the oxide
is Vox must satisfy:

−Va = Vox +Vs

11.4 Inversion
If we continue to increase the magnitu-
de of the negative voltage applied to the
gate until we will have as many holes at
the interface as we have electrons in the
bulk.
Strong Inversion: Assuming that NC =
NV , this occurs when the Fermi level at
the interface is as close to the valence
band as it is to the conduction band in
the bulk.

eVf = EFn −EFi = Eg − kT ln
(
NC
ND

)
= kT ln

(
ND
ni

)

11.5 Surface Space Charge
The electric field at the interface with
the oxide layer (x = 0) where the surface
potential is Vs is:

Es =
(√

2kT
eLD

)[
p0
n0

{
exp

(−eVs
kT

)
+
eVs
kT
− 1

}
+

{
exp

( eVs
kT

)
− eVs
kT
− 1

}]1/2

The Debye screening length, LD , is the
length scale over which electric fields in
the semiconductor are screened.

LD =
(
ε0εrkT

e2n0

)1/2

From the Gauss Law of Electrostatics, the
surface space charge per unit area is:

Qs = −ε0εrEs

If Cox is the capacitance per unit area
of the insulator, then the voltage drop
across the insulator must be:

Vox = − Qs
Cox

Strong inversion begins at a surface po-
tential of:

Vs(inv) = 2Vf =
2kT
e

ln
(
ND
ni

)
The maximum depletion width occurs at
the onset of strong inversion:

wmax = 2
(
ε0εrVf
eND

)1/2

Deep depletion: If the voltage applied to
the metal is varied more rapidly than the
time required to produce the holes, then
the depletion region can be extended
much further (quasi-equilibrium condi-
tion).
The time required for strong inversion to
occur:

τinv =
en0tinv
p0evs

11.6 Threshold Voltage
The charge per unit area in the depletion
region at strong inversion is:

Qd = eNDwmax = 2
(
ε0εreNDVf

)1/2

If the oxide capacitance per unit area is
Ci , then the threshold voltage dropped
across both the oxide and the depleted
region is:

VT = −Qd
Ci
− 2Vf

11.7 Real MOS Systems
In general, there will be a difference bet-
ween the work functions of the metal and
semiconductor. A built in potential will
form between the semiconductor and the
metal, much of which will be dropped
across the oxide and a proportion will be
taken up in band bending in the semi-
conductor.

For φm < φsc, there is an additional
accumulation of electrons at the oxide-
semiconductor interface.
In order to achieve a flat band condition,
we need to apply a voltage to the metal
gate of:

VFB =
φm −φsc

e
Extra charges introduced to the system
by the oxide fall into four types:

1. Interface trapped charges, Qit
2. Fixed oxide charges, Qf
3. Oxide trapped charges, Qot
4. Mobile ionic charges, Qm

11.8 MOSFET Characteristics

If we apply a voltage VDS to the drain,
the drain source current, IDS is then

IDS = −
CiµhFEW

L

(VGS −VT )VDS −
V 2
DS
2


µbFE is the field effect mobility of carriers
in the channel.

This expression for IDS is valid up to sa-
turation current, IDSsat , where the chan-
nel has been pinched off, and no more
current can be forced through the chan-
nel.
The saturation current is:

IDS ( sat ) = −
CiµhFEW (VGS −VT )2

2L

In the linear region, the small signal
channel conductance and mutual trans-
conductance can be obtained:

gs =
∂IDS
∂VDS

=
CiµhFEW

L
(VGS −VT )

gm =
∂IDS
∂VGS

=
CiµhFEW

L
VDS

The mutual transconductance in the sa-
turated region is given by:

gm =
∂IDS (sat)
∂VGS

=
CiµhFEW

L
(VGS −VT )

The small signal equivalent circuit for
the MOSFET:

(The End)


