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1 Bipolar Transistor
1.1 Bipolar Junction Transistors

BJTs have low input impedance to base.
The output is collector current, which de-
pends on base-emitter voltage (and cur-
rent).
1.2 The Ebers-Moll Model
The collector current IC is related to the
base-emitter voltage VBE by:

IC = Is
[
e
qVBE
kT − 1

]
≈ Ise

q0VBE
kT = Ise

VBE
Vt

Is is a constant determined by the tran-
sistor construction. Vt = kT /q ∼ 25mV at
room temperature.
This is similar in form to the pn diode
equation where for the base-emitter di-
ode:

IB = I ′s
[
e
qVBE
kT −1

]
The current gain of the transistor Is/I ′s =
hfe is approximately constant (over a li-
mited range)

IC = IBhfe

hfe is often around 100− 500 for low cur-
rent, small signal devices.
1.3 Emitter Resistance
There is an internal emitter resistance
associated with BJTs which depends on
the current flowing through the device.
IC ' IE as IB� IC,E .

re =
∂VBE
∂IC

≈ dVBE
dIC

=
(
dIC
dVBE

)−1
≈ Vt
IC

Hence, re ≈ (25/IC )Ω with IC in mA
1.4 The Small Signal Model
For a typical BC108 npn transistor with
IC = 2mA and VBE = 0.6V, the transis-
tor can be modelled with the following
circuit:

We can ignore hoe (∼ 6%) and hre (∼ 5%)
and the small signal model can be sim-
plified to:

Consider the equivalence of this base re-
sistance model to an emitter resistance
model:

For equivalence of Vbe:

re =
hie
hfe

=
Vt
IC

2 Bipolar Transistor Amplifier Design
2.1 Amplifier Circuit
Consider the following general amplifier
circuit:

Function of passive components:

• C is the ac signal coupling capaci-
tor: isolates the dc bias levels bet-
ween stages

• R1 and R2 form a voltage source
to provide a d.c. base bias current

• R3 provides negative feedback to
the base bias current to stabilise
the bias point

• R4 is the collector output load re-
sistor: changes in collector current
create an output voltage swing.

ib =
vi

hfeR3 + hie

The input impedance is:

Ri = R1 ‖R2‖ (hfeR3 + hie)

= R1 ‖R2‖hfe (R3 + re)

Gain of the amplifier:

Gain =
−hfeR4

(hfeR3 + hie)
=
−R4
R3 + re

The output impedance is R4.

ve =
R3

R3 + re
vi

2.2 Amplifier Design
Steps to design a simple bipolar transis-
tor amplifier:

1. Find the number of stages requi-
red at 20dB power gain per transis-
tor.
Power gain in dB:

10log10

(
Pout
Pin

)
2. Work out the required voltage gain

from each stage by dividing the to-
tal gain required equally between
the n stages.

Vrms =
1

2
√

2
Vpp

Assuming the output and input
impedances are matched, we lose
50% of the signal volrage at each
coupling.
Total gain product:

Gain =
1

(0.5)n+1
Vout
Vin

Divided between n stages =
n√
Gain per stage.

3. Set the ratio of input/output impe-
dance for each stage.

n

√
RS
RL

4. Choose R4’s from output impedan-
ces required, working back from
output.

Rout = R4

5. Choose R3’s from gains required
(include a safety margin).

Gain ≈ −R4
R3

6. Choose R2’s and R1 ’s from input
impedances required and VBE =
0.6V.
Rules of thumb:

VC =
VS
2

VE ∼
VS
20

VB = (VE + 0.6)

From the small signal model:

Rin ≈ R1 ‖R2‖R3hfe

Take hfe = 250. Choose R2 ≈ 2Rin.

7. Select transistors for high hfe, vol-
tage, current and power ratings

8. Check effect of low hfe, particular-
ly for higher current stage - re-jig
values as required.

The series capacitors for ac signal coup-
ling between stages are selected in com-
bination with the input tand output im-
pedances to give a low frequency roll-off:

f3dB =
1

2π
(
Rout(n) +Rin(n+ 1)

)
C

The action of R3, of providing negative
feedback, improves the stability of the cir-
cuit but reduces the gain.
3 Transistor Frequency Response
3.1 Miller E�ect
Consider an (inverting) amplifier with
some capacitance between its input and
output.

The input capacitance is equivalent to
(1 +G)C. The magnification of capacitan-
ce is known as the Miller Effect.
The output capacitance is equivalent to(
1 + 1

G

)
C ≈ C.
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3.2 Transistor Capacitance

cie (∼ 10− 100pF) is predominantly due
to a forward biased pn junction.
ccb and coe (∼ 1 − 10pF) are lower pa-
rasitic values through a reverse biased
junction.
The base-emitter capacitance cie depends
on the current passing through the tran-
sistor.

cie = kIE ≈ kIC
Since re = 0.025/IC , ft is given for tran-
sistors representing useful bandwidth in-
dependent of current:

ft =
1

2πCiere
≈ 1

0.05πk

The main gain and frequency characteri-
stics of a transistor may be described by
2 parameters, hfe and ft .
For the first stage of the audio amplifier,
the small signal model is:

The equivalent base-emitter impedances
referred to ground are × vi

vi−ve .

The equivalent input circuit becomes:

f−3dB =
1

2πR′C′
The output circuit is:

3.3 Di�erential Amplifier
The differential amplifier is sometimes
called a long-tailed pair.

Differential gain: If we apply a differential
input voltage vi between the 2 bases such
that: base 1⇒ +vi /2 and base 2⇒−vi /2,
therefore ∆Ie = vi /2R3 = ∆Ic since the
emitter follows the base voltage change
and the T point voltage does not change.

The differential gain = R4
2R3

.

Common mode gain: If we apply a com-
mon mode ie. equal input voltage to each
base then, base 1 and base 2⇒ +vi , the-
refore ∆Ie = vi /(2RT +R3) since the emit-
ters follow the base voltage change and
the impedance of the emitters to ground
is through the pair of R3’s and RT .

The common mode gain = R4
2RT +R3

.

3.4 The Cascode Circuit

In this circuit the input transistor T1 has
a collector voltage fixed at 3 V−0.6 V =
2.4 V, hence there is no Miller effect with
C1 at the input.
4 Field E�ect Transistors
4.1 FET Characteristics

When the gate to source voltage VGS rises
above a threshold offset value Vth, then
the transistor begins to conduct a current
ID between its drain and source with a
voltage VDS across it.
There are 3 regimes of interest:

1. (VGS −Vth) < 0, ID = 0 ie. the de-
vice is off.

2. (VGS −Vth) ≥ VDS, ID =
VDS2K [(VGS −Vth)−VDS/2] ie.
it’s a voltage controlled resistor
(linear)

3. (VGS −Vth) ≤ VDS, ID =
K (VGS −Vth)2 ie. it’s a voltage
controlled current source (satura-
tion)

4.2 Small Signal Model

This applies to saturation regime where
(VGS −Vth) < VDS
4.3 Current Sources
Simple FET constant current diodes are
available to supply a constant current
with pre-selected values.
For more accurate current sources, a cur-
rent mirror can be used where a refe-
rence current is drawn through one of
a matched pair of transistors to create a
VBE corresponding to that current.

5 Oscillators
5.1 Positive Feedback
Consider an amplifier with positive feed-
back including a filter in the feedback
path. The circuit will sustain stable oscil-
lations when the gain around the ampli-
fier/ feedback filter loop is unity and the
phase shift zero.

|AF(ω0)| = 1

∠AF(ω0) = 0 or 360◦

5.2 RF Oscillators
We can tune a radio oscillator using the
Voltage Controlled Oscillators (VCOs) ba-
sed on the variable capacitance of a re-
versed biased pn diode (varactors).
By including the capacitance of a varac-
tor in an LC tank circuit, the frequency
can be voltage tuned by a factor of 2 or
more.

The Colpitts Oscillator: We use an emit-
ter follower (gain ∼ 1 ) driving the LC
network (gain ∼ 2 ) to create a positive
feedback loop.

There are 2 convenient points to take the
output from:

1. Across L for minimum distortion,
but only for high impedance loads.

2. Across R3 at the emitter for higher
output power and load isolation,
but higher harmonic distortion wi-
thout careful trimming.

In radio circuits, power is used to descri-
be signal levels in dBm (decibels relative
to 1mW).

dBm = 10log10

(
P /10−3

)
Steps to design an oscillator circuit for a
radio tuner:

1. Check power level ≤ 60% of sup-
ply (5V).

2. Select transistor and set d.c. bias
resistors.
Choose low power NPN transistor
with ft >> required frequency. Set
base bias to give VE ≈ 1/2 supply
and VB = 0.6 +VE .
Choose R3 ≈ 1.5RL to 2RL. Choose
values of R1 and R2 ∼ hfe(R3‖RL).

3. Select LC and varactor.
Total C tuning ratio is:

Cmax
Cmin

=
(
fmax
fmin

)2

Choose big Cfb to block d.c., low
impedance at signal frequency.
Select a varactor with Cvar .

Ctotal = Cvar +C/2

L =
1

(2πfmid )2Cmid

4. Select LC network drive resistor to
be 1/5 of all resistances parallel to
L.

Rd ≈
1
5

(R1‖R2‖ωLQ‖hfeR3‖hfeRL)

The quality factor Q ∼ 50
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The Hartley and Armstrong circuits:

5.3 Negative Impedance Oscillator
In the negative impedance oscillator, a
pair of (fast) transistors are configured
to give an apparent negative resistance
which compensates for the circuit resisti-
ve losses and the resonant LC oscillations
do not die away.

The small signal model equivalent:

Z0 = Rb‖ − 2re
Hence we can make a negative impe-
dance based oscillator circuit by adding a
suitable tuned LC circuit and cancelling
out the resistive parasitic component of
the LC combination.

The oscillation will grow until the volta-
ge swing across the transistors prevents
them from making an effective negati-
ve impedance and a steady oscillation is
observed.
6 Filters
6.1 Passive RC Filter

For low pass filter:

vo
vi

=
1

1 + j2πf CR

For high pass filter:

vo
vi

=
1

1− j
2πf cR

6.2 Resonant LC Circuit

The resonant angular frequency is given
when:

w2
0 =

1
LC

The quality factor is:

Q =
1

ω0Cr
=
ω0L
r

For the resonant LC circuit:

vo
vi

=
1(

1−ω2LC
)

+ jωCr

=
1

1−
(
w
w0

)2
+ j

Q
(
w
w0

)
If ω =ω0,

∣∣∣∣ vovi ∣∣∣∣ =Q ∼ 100.

If ω = 1.1ω0,
∣∣∣∣ vovi ∣∣∣∣ ≈ 5.

6.3 Negative Impedance Converter
(NIC)

Zi =
vi
ii

= −Z

If Z is a resistor R, then Zi is −R. If Z
is a capacitor then Zi = j/ωC (not an in-
ductor as the frequency dependence is
reciprocal).
The gyrator:

Zi = −
(
R+
−R(R+Z)
−R+R+Z

)
=
R2

Z

If Z is a capacitor, then Zi = jωCR2 ie.
an inductor with L = CR2.
6.4 Filter Polynomials
Consider 3 types of (n-pole only) filters:

1. Bessel ∣∣∣∣∣vovi
∣∣∣∣∣ ≈ 10

− 3
20

( f
fc

)2

2. Butterworth

∣∣∣∣∣vovi
∣∣∣∣∣ =

1 +
(
f

fc

)2n−
1
2

3. Chebyshev

∣∣∣∣∣vovi
∣∣∣∣∣ =

[
1 + ε2c2n

(
f

fc

)]− 1
2

fc is the −3dB cut-off frequency, ε is bet-

ween 0 and 1 and cn
(
f
fc

)
is the Chebys-

hev polynomial of order n for f
fc

.

6.5 Voltage-Controlled Voltage Source
(VCVS)

The low pass 2-pole VCVS filter:

For convenience, C1 = C2 = C and R1 =
R2 = R.

∣∣∣∣∣vovi
∣∣∣∣∣ = A

1 +
(
ω
ωn

)2
B+

(
ω
ωn

)4−
1
2

The resonant frequency ωn = 1
CR and the

constant B = (3−A)2 − 2. If B = 0, this is
a Butterworth filter.

Higher orders can be realised by casca-
ding several stages (each stage gives 2
poles).
f−3dB desired overall = 1/ (2πfnCR) for
each stage. For high pass sections, take
the reciprocal of fn as the frequency sca-
ling factor.
7 Mixers
7.1 Phase Detectors
The output signal of a mixer contains
sum and difference frequencies of the in-
puts.
Double balanced mixer:

The cascode or dual-gate MOSFET cir-
cuits:

7.2 The Phase Locked Loop (PLL)

The phase detector (ie. mixer) compares
the phase of the input with the VCO out-
put and produces a phase error signal
with a dc component. This signal is fil-
tered and fed to the VCO such that the
frequency and phase of the VCO output
locks to that of the input signal and will
track with it.
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All oscillating terms implicitly multi-
plied by ejωt .

θ0 ≡ ej(ωt+θ)

θref = ejωt

For the phase detector:

V1 = Kp (θ0 −θref)

For the VCO:

2πf =
dθ0
dt

= jωθ0 = KoV2

If ω2
n =

KoKp
CR1

and ζ = ωnCR2
2 then:

θ̈

ω2
n

+
θ̇2ζ
ωn

+θ = θref +
2ζ
ωn

θ̇ref

Note that ω is the frequency of relative
phase swing or variation between the in-
put signal and VCO frequency once the
loop is locked. The lock-up time is give
approximately by:

t ≈ 4δω2

B3

δω is the initial frequency difference and
B is the loop bandwidth = KoKpKF .
FM radio LO with quartz crystal refe-
rence:

fref
M

=
fout
N

7.3 Demodulation Circuits
Amplitude modulation:

Frequency and phase modulation: Band ed-
ge filters (slope detectors) can convert
FM to AM. A pair of matched inverse li-
near slope filters can be used for a linear
response.

8 Transmission Lines
8.1 Characteristic Impedance
For a transmission line with L = induc-
tance per unit length and C = capacitan-
ce per unit length, the wave velocity is
given by:

v =
1
√
LC

The characteristic impedance is:

Z0 =

√
L
C

The phase constant is:

β = 2π/λ

The voltage/field reflection coefficient is:

ρ =
∣∣∣∣∣ZL −Z0
ZL +Z0

∣∣∣∣∣
The power reflection coefficient P = ρ2.
The input impedance for a length of
transmission line terminated with a gi-
ven impedance is:

Zin = Z0

(
ZL +Z0j tanβL
Z0 +ZLj tanβL

)

8.2 Controlled Impedance
For a Microstrip line with width w and
dielectric thickness d, the capacitance
per unit length of the line is estimated
by:

C = (w+ 2d)
ε0εr
d

The speed of light in the dielectric is:

v =
1

√
ε0εrµ0

=
c0√
εr

The characteristic impedance of the Mi-
crostrip is given by:

z0 =
1
vC

=
d

w+ 2d
· 1
c0ε0
√
εr

8.3 Impedance Matching

Xp shunts Rhi and Xs series Rlo.

Zin = Xs +
RhiXp
Rhi +Xp

= jωL+
Rhi − jωCR2

hi(
1 +ω2c2R2

hi

)
If L =

CR2
hi(

1+ω2C2R2
hi

) then:

Zin =
Rhi(

1 +ω2C2R2
hi

)
With ω2 =

CR2
hi−L

LC2R2
hi

:

Zin =
Rhi

CR2
hi/L

=
L

CRhi

We can make<
(
Rhi‖Xp

)
< Rhi and can-

cel any=
(
Rhi‖Xp

)
with a series Xs. The

sharpness of the response is given by the
Q factor.

Q =
Rhi
Xp

=
Xs
Rlo

=

√
Rhi
Rlo
− 1

The effective Qf is half the filter Q. The
half power bandwidth B is given by:

B =
2f0
Q

=
f0
Qf

9 Antennas
9.1 The Ideal Dipole
The total power radiated from an ideal
dipole is:

Pr = 40π2I2
(
∆z
λ

)2
=

1
2
I2Rr

Rr is the radiation resistance.

Rr = 80π2
(
∆z
λ

)2

The radiation efficiency is given by:

e =
Pr
Pin

Pin =
1
2
I2 (Rr +Rohmic)

Gain is the maximum power radiated per
unit area divided by power per unit area
from isotropic antenna:

G =
Pmax/unit area
Pin/4πr2

The directivity gives an indication of how
directional an antenna is:

D =
G
e

The power delivered into a matched load
by an antenna is the product of effecti-
ve aperture Ae and the power density in
incident radio wave.
Antenna equation:

G =
4πAe
λ2

The current is carried only by an outer
layer of thickness, δ, within the surface
of a conductor where the skin depth, δ,
is given by:

δ =

√
2

ωµσ

µ is the magnetic permeability and σ is
the metal conductivity (σ = 1/ρ, resisti-
vity).

9.2 Practical Antennas
Any antenna can be made up by integra-
ting the ideal dipole, with appropriate
current distributions, over the antenna
structure.

Rr = 20π2
(
∆z
λ

)2

For cosine distribution:

Rr = 30π2
(
∆z
λ

)2

Consider an antenna with length L and
diameter d.

Rohmic =
ρL

A
=
ρL

πdδ

e =
Rr

Rr +Rohmic

(The End)


