3B1 Radio Frequency Electronics by Zyi Z., Page 1 in 4

1 Bipolar Transisto

1.1 Bipolar Junction Transistors

BJTs have low input impedance to base The output is collector current, which depends on base-emitter voltage (and current).

1.2 The Ebers-Moll Model

The collector current I_{C} is related to the base-emitter voltage $V_{B E}$ by:

$$
I_{C}=I_{S}\left[e^{\frac{q V_{B E}}{k T}}-1\right] \approx I_{S} e^{\frac{q_{0} V_{B E}}{k T}}=I_{s} e^{\frac{V_{B E}}{V_{t}}}
$$

I_{S} is a constant determined by the transistor construction. $V_{t}=k T / q \sim 25 \mathrm{mV}$ a room temperature.
This is similar in form to the $p n$ diode equation where for the base-emitter diode:

$$
I_{B}=I_{S}^{\prime}\left[e^{\frac{q V_{B E}}{k T}-1}\right]
$$

The current gain of the transistor $I_{S} / I_{S}^{\prime}=$ h_{fe} is approximately constant (over a limited range)

$$
I_{C}=I_{B} h_{\mathrm{fe}}
$$

h_{fe} is often around 100-500 for low current, small signal devices.

13 Emitter Resistance

There is an internal emitter resistance associated with BJTs which depends on the current flowing through the device. $I_{C} \simeq I_{E}$ as $I_{B} \ll I_{C, E}$.

$$
r_{e}=\frac{\partial V_{B E}}{\partial I_{C}} \approx \frac{d V_{B E}}{d I_{C}}=\left(\frac{d I_{C}}{d V_{B E}}\right)^{-1} \approx \frac{V_{t}}{I_{C}}
$$

Hence, $r_{e} \approx\left(25 / I_{C}\right) \Omega$ with I_{C} in mA

1.4 The Small Signal Model

For a typical BC108 npn transistor with $I_{C}=2 \mathrm{~mA}$ and $V_{B E}=0.6 \mathrm{~V}$, the transis tor can be modelled with the following circuit:

Function of passive components:
We can ignore $h_{\text {oe }}(\sim 6 \%)$ and $h_{\text {re }}(\sim 5 \%)$ and the small signal model can be simplified to:

Consider the equivalence of this base resistance model to an emitter resistance model:

For equivalence of $V_{b e}$:

$$
r_{e}=\frac{h_{\mathrm{ie}}}{h_{\mathrm{fe}}}=\frac{V_{t}}{I_{C}}
$$

2 Bipolar Transistor Amplifier Design

 2.1 Amplifier CircuitConsider the following general amplifier circuit:

- C is the ac signal coupling capaci tor: isolates the dc bias levels bet ween stages
- R_{1} and R_{2} form a voltage source to provide a d.c. base bias current
- R_{3} provides negative feedback to the base bias current to stabilise the bias point
- R_{4} is the collector output load resistor: changes in collector current create an output voltage swing.

$$
i_{b}=\frac{v_{i}}{h_{\mathrm{fe}} R_{3}+h_{\mathrm{ie}}}
$$

The input impedance is:

$$
\begin{aligned}
R_{i} & =R_{1}\left\|R_{2}\right\|\left(h_{\mathrm{fe}} R_{3}+h_{\mathrm{ie}}\right) \\
& =R_{1}\left\|R_{2}\right\| h_{\mathrm{fe}}\left(R_{3}+r_{e}\right)
\end{aligned}
$$

Gain of the amplifier:

$$
\text { Gain }=\frac{-h_{\mathrm{fe}} R_{4}}{\left(h_{\mathrm{fe}} R_{3}+h_{\mathrm{ie}}\right)}=\frac{-R_{4}}{R_{3}+r_{e}}
$$

The output impedance is R_{4}.

$$
v_{e}=\frac{R_{3}}{R_{3}+r_{e}} v_{i}
$$

2.2 Amplifier Design

Steps to design a simple bipolar transis tor amplifier:

1. Find the number of stages required at 20 dB power gain per transistor.
Power gain in dB :

$$
10 \log _{10}\left(\frac{P_{\mathrm{out}}}{P_{\mathrm{in}}}\right)
$$

2. Work out the required voltage gain from each stage by dividing the total gain required equally between the n stages.

$$
V_{\mathrm{rms}}=\frac{1}{2 \sqrt{2}} V_{\mathrm{pp}}
$$

Assuming the output and input impedances are matched, we lose 50% of the signal volrage at each coupling.
Total gain product:

$$
\text { Gain }=\frac{1}{(0.5)^{n+1}} \frac{V_{\text {out }}}{V_{\text {in }}}
$$

Divided between n stages $=$ $\sqrt[n]{\text { Gain }}$ per stage.
3. Set the ratio of input/output impedance for each stage.

$$
\sqrt[n]{\frac{R_{S}}{R_{L}}}
$$

4. Choose R_{4} 's from output impedances required, working back from output.

$$
R_{\mathrm{out}}=R_{4}
$$

5. Choose R_{3} 's from gains required (include a safety margin)

$$
\text { Gain } \approx-\frac{R_{4}}{R_{3}}
$$

6. Choose R_{2} 's and R_{1} 's from input impedances required and $V_{B E}=$ 0.6 V .

Rules of thumb:

$$
\begin{gathered}
V_{C}=\frac{V_{S}}{2} \\
V_{E} \sim \frac{V_{S}}{20} \\
V_{B}=\left(V_{E}+0.6\right)
\end{gathered}
$$

From the small signal model:

$$
R_{\mathrm{in}} \approx R_{1}\left\|R_{2}\right\| R_{3} h_{\mathrm{fe}}
$$

Take $h_{\mathrm{fe}}=250$. Choose $R_{2} \approx 2 R_{\mathrm{in}}$.
7. Select transistors for high h_{fe}, voltage, current and power ratings
8. Check effect of low $h_{\text {fe }}$, particularly for higher current stage - re-jig values as required.

The series capacitors for ac signal coupling between stages are selected in combination with the input tand output impedances to give a low frequency roll-off:

$$
f_{3 \mathrm{~dB}}=\frac{1}{2 \pi\left(R_{\mathrm{out}(n)}+R_{\mathrm{in}(n+1)}\right) \mathrm{C}}
$$

The action of R_{3}, of providing negative feedback, improves the stability of the circuit but reduces the gain.

3 Transistor Frequency Response

3.1 Miller Effect

Consider an (inverting) amplifier with some capacitance between its input and output.

The input capacitance is equivalent to $1+G) C$. The magnification of capacitance is known as the Miller Effect.
The output capacitance is equivalent to $\left(1+\frac{1}{G}\right) C \approx C$.

3B1 Radio Frequency Electronics

3.2 Transistor Capacitance

B

$c_{\text {ie }}(\sim 10-100 \mathrm{pF})$ is predominantly due to a forward biased $p \eta$ junction.
c_{cb} and $c_{\mathrm{oe}}(\sim 1-10 \mathrm{pF})$ are lower parasitic values through a reverse biased junction.
The base-emitter capacitance $c_{\text {ie }}$ depends on the current passing through the transistor.

$$
c_{\mathrm{ie}}=k I_{E} \approx k I_{C}
$$

Since $r_{e}=0.025 / I_{C}, f_{t}$ is given for transistors representing useful bandwidth independent of current:

$$
f_{t}=\frac{1}{2 \pi C_{\mathrm{ie}} r_{e}} \approx \frac{1}{0.05 \pi k}
$$

The main gain and frequency characteristics of a transistor may be described by 2 parameters, h_{fe} and f_{t}.
For the first stage of the audio amplifier, the small signal model is:

The equivalent base-emitter impedances referred to ground are $\times \frac{v_{i}}{v_{i}-v e}$.
The equivalent input circuit becomes:

$R^{\prime}=51 \mathrm{~kL}$
$c=23.3 \mathrm{pF}$

$$
f_{-3 \mathrm{~dB}}=\frac{1}{2 \pi R^{\prime} C^{\prime}}
$$

The output circuit is:

3.3 Differential Amplifier

The differential amplifier is sometimes called a long-tailed pair.

Differential gain: If we apply a differential input voltage v_{i} between the 2 bases such that: base $1 \Rightarrow+v_{i} / 2$ and base $2 \Rightarrow-v_{i} / 2$, therefore $\Delta I_{c}=v_{i} / 2 R_{3}=\Delta I_{c}$ since the emitter follows the base voltage change and the T point voltage does not change. The differential gain $=\frac{R_{4}}{2 R_{3}}$.
Common mode gain: If we apply a common mode ie. equal input voltage to each base then, base 1 and base $2 \Rightarrow+v_{i}$, therefore $\Delta I_{e}=v_{i} /\left(2 R_{T}+R_{3}\right)$ since the emitters follow the base voltage change and the impedance of the emitters to ground is through the pair of R_{3} 's and R_{T}.
The common mode gain $=\frac{R_{4}}{2 R_{T}+R_{3}}$

3.4 The Cascode Circuit

In this circuit the input transistor T_{1} has a collector voltage fixed at $3 \mathrm{~V}-0.6 \mathrm{~V}=$ C_{1} at the input.

4 Field Effect Transistors

4.1 FET Characteristics

When the gate to source voltage V_{GS} rises above a threshold offset value $V_{\text {th }}$, then the transistor begins to conduct a current I_{D} between its drain and source with a voltage $V_{\text {DS }}$ across it.
There are 3 regimes of interest:

1. $\left(V_{\mathrm{GS}}-V_{\text {th }}\right)<0, \quad I_{\mathrm{D}}=0$ ie. the de-
vice is off. vice is off.
2. $\left(\begin{array}{l}\left.V_{\mathrm{GS}}-V_{\mathrm{th}}\right) \\ V_{\mathrm{DS}} 2 K\left[\left(V_{\mathrm{GS}}-V_{\mathrm{th}}\right)-V_{\mathrm{DS}} / 2\right]\end{array} \quad V_{\mathrm{DS}}, \quad I_{\mathrm{D}}=\right.$ it's a voltage controlled resistor (linear)
3. $\left(V_{\mathrm{GS}}-V_{\mathrm{th}}\right) \leq V_{\mathrm{DS}}, I_{\mathrm{D}}=$ $K\left(V_{\mathrm{GS}}-V_{\mathrm{th}}\right)^{2}$ ie. it's a voltage controlled current source (satura tion)

4.2 Small Signal Model

This applies to saturation regime where $\left(V_{\mathrm{GS}}-V_{\mathrm{th}}\right)<V_{\mathrm{DS}}$

4.3 Current Sources

Simple FET constant current diodes are available to supply a constant current with pre-selected values.
For more accurate current sources, a cur rent mirror can be used where a reference current is drawn through one of a matched pair of transistors to create a V_{BE} corresponding to that current.

5 Oscillators

5.1 Positive Feedback

Consider an amplifier with positive feed back including a filter in the feedback path. The circuit will sustain stable oscilfations when the gain around the amplifier/ feedback filter loop is unity and the phase shift zero
$\left|A F\left(\omega_{0}\right)\right|=1$
$\angle A F\left(\omega_{0}\right)=0$ or 360°

5.2 RF Oscillators

We can tune a radio oscillator using the Voltage Controlled Oscillators (VCOs) based on the variable capacitance of a reversed biased $p n$ diode (varactors).
By including the capacitance of a varac tor in an LC tank circuit, the frequency can be voltage tuned by a factor of 2 or more.

The Colpitts Oscillator: We use an emitter follower (gain ~ 1) driving the LC network (gain ~ 2) to create a positive feedback loop.

There are 2 convenient points to take the output from

1. Across L for minimum distortion, but only for high impedance loads.
2. Across R_{3} at the emitter for higher output power and load isolation, but higher harmonic distortion without careful trimming.
In radio circuits, power is used to describe signal levels in dBm (decibels relative to 1 mW).

$$
\mathrm{dBm}=10 \log _{10}\left(P / 10^{-3}\right)
$$

Steps to design an oscillator circuit for a radio tuner

1. Check power level $\leq 60 \%$ of supply (5V).
2. Select transistor and set d.c. bias resistors
Choose low power NPN transistor with $f_{t} \gg$ required frequency. Set base bias to give $V_{E} \approx 1 / 2$ supply and $V_{B}=0.6+V_{E}$.
Choose $R_{3} \approx 1.5 R_{L}$ to $2 R_{L}$. Choose values of R_{1} and $R_{2} \sim h_{\mathrm{fe}}\left(R_{3} \| R_{L}\right)$.
3. Select LC and varactor.

Total C tuning ratio is:

$$
\frac{C_{\max }}{C_{\min }}=\left(\frac{f_{\max }}{f_{\min }}\right)^{2}
$$

Choose big $C_{f b}$ to block d.c., low impedance at signal frequency. Select a varactor with $C_{v a r}$.

$$
C_{\mathrm{total}}=C_{\mathrm{var}}+C / 2
$$

$$
L=\frac{1}{\left(2 \pi f_{\mathrm{mid}}\right)^{2} C_{\mathrm{mid}}}
$$

4. Select LC network drive resistor to be $1 / 5$ of all resistances parallel to L.
$R_{d} \approx \frac{1}{5}\left(R_{1}\left\|R_{2}\right\| \omega L Q\left\|h_{\mathrm{fe}} R_{3}\right\| h_{\mathrm{fe}} R_{L}\right)$
The quality factor $Q \sim 50$

3B1 Radio Frequency Electronics
by Ziyi Z., Page 3 in 4

The Hartley and Armstrong circuits:

5.3 Negative Impedance Oscillator

In the negative impedance oscillator, a pair of (fast) transistors are configured to give an apparent negative resistance which compensates for the circuit resisti ve losses and the resonant LC oscillations do not die away.

The small signal model equivalent:

$$
Z_{0}=R_{b} \|-2 r_{e}
$$

Hence we can make a negative impe dance based oscillator circuit by adding a suitable tuned LC circuit and cancelling out the resistive parasitic component of the LC combination.

The oscillation will grow until the voltage swing across the transistors prevents them from making an effective negati-
ve impedance and a steady oscillation is observed.

6 Filters

6.1 Passive RC Filter

low pass
high pass

For low pass filter:

$$
\frac{v_{0}}{v_{i}}=\frac{1}{1+j 2 \pi f C R}
$$

For high pass filter:

$$
\frac{v_{o}}{v_{i}}=\frac{1}{1-\frac{j}{2 \pi f c R}}
$$

6.2 Resonant LC Circuit

The resonant angular frequency is given when:

$$
w_{0}^{2}=\frac{1}{L C}
$$

The quality factor is:

$$
Q=\frac{1}{\omega_{0} C r}=\frac{\omega_{0} L}{r}
$$

For the resonant LC circuit:

$$
\begin{aligned}
\frac{v_{0}}{v_{i}} & =\frac{1}{\left(1-\omega^{2} L C\right)+j \omega C r} \\
& =\frac{1}{1-\left(\frac{w}{w_{0}}\right)^{2}+\frac{j}{Q\left(\frac{w}{w_{0}}\right)}}
\end{aligned}
$$

If $\omega=\omega_{0},\left|\frac{v_{o}}{v_{i}}\right|=Q \sim 100$.
If $\omega=1.1 \omega_{0},\left|\frac{v_{o}}{v_{i}}\right| \approx 5$.
6.3 Negative Impedance Converter

$$
Z_{i}=\frac{v_{i}}{i_{i}}=-Z
$$

If Z is a resistor R, then Z_{i} is $-R$. If Z is a capacitor then $Z_{i}=j / \omega C$ (not an inductor as the frequency dependence is reciprocal).
The gyrator:

$$
Z_{i}=-\left(R+\frac{-R(R+Z)}{-R+R+Z}\right)=\frac{R^{2}}{Z}
$$

If Z is a capacitor, then $Z_{i}=j \omega C R^{2}$ ie. an inductor with $L=C R^{2}$.

6.4 Filter Polynomials

Consider 3 types of (n-pole only) filters:

1. Bessel

$$
\left|\frac{v_{o}}{v_{i}}\right| \approx 10^{-\frac{3}{20}\left(\frac{f}{f_{c}}\right)^{2}}
$$

2. Butterworth

$$
\left|\frac{v_{o}}{v_{i}}\right|=\left[1+\left(\frac{f}{f_{c}}\right)^{2 n}\right]^{-\frac{1}{2}}
$$

3. Chebyshev

$$
\left|\frac{v_{o}}{v_{i}}\right|=\left[1+\epsilon^{2} c_{n}^{2}\left(\frac{f}{f_{c}}\right)\right]^{-\frac{1}{2}}
$$

f_{c} is the -3 dB cut-off frequency, ϵ is between 0 and 1 and $c_{n}\left(\frac{f}{f_{c}}\right)$ is the Chebyshev polynomial of order n for $\frac{f}{f_{c}}$.

Normalised Frequency ($\mathrm{f} / \mathrm{f}_{\mathrm{3dB}}$)

6.5 Voltage-Controlled Voltage Source (VCVS)
The low pass 2-pole VCVS filter:

For convenience, $C_{1}=C_{2}=C$ and $R_{1}=$ $R_{2}=R$.

$$
\left|\frac{v_{0}}{v_{i}}\right|=A\left[1+\left(\frac{\omega}{\omega_{n}}\right)^{2} B+\left(\frac{\omega}{\omega_{n}}\right)^{4}\right]^{-\frac{1}{2}}
$$

The resonant frequency $\omega_{n}=\frac{1}{C R}$ and the constant $B=(3-A)^{2}-2$. If $B=0$, this is a Butterworth filter.

Higher orders can be realised by cascading several stages (each stage gives 2 poles).
$f_{-3 \mathrm{~dB}}$ desired overall $=1 /\left(2 \pi f_{n} C R\right)$ for each stage. For high pass sections, take the reciprocal of f_{n} as the frequency scaling factor.

7 Mixers

7.1 Phase Detectors

The output signal of a mixer contains sum and difference frequencies of the inputs.
Double balanced mixer:

The cascode or dual-gate MOSFET circuits:

7.2 The Phase Locked Loop (PLL)

The phase detector (ie. mixer) compares the phase of the input with the VCO output and produces a phase error signal with a dc component. This signal is filtered and fed to the VCO such that the
frequency and phase of the VCO output frequency and phase of the VCO output
locks to that of the input signal and will locks to that

3B1 Radio Frequency Electronics
by Ziyi Z., Page 4 in 4

All oscillating terms implicitly multiplied by $e^{j \omega t}$.

$$
\begin{gathered}
\theta_{0} \equiv e^{j(\omega t+\theta)} \\
\theta_{\mathrm{ref}}=e^{j \omega t}
\end{gathered}
$$

For the phase detector:

$$
V_{1}=K_{p}\left(\theta_{0}-\theta_{\mathrm{ref}}\right)
$$

For the VCO:

$$
\begin{gathered}
2 \pi f=\frac{d \theta_{0}}{d t}=j \omega \theta_{0}=K_{o} V_{2} \\
\text { If } \omega_{n}^{2}=\frac{K_{0} K_{p}}{C R_{1}} \text { and } \zeta=\frac{\omega_{n} C R_{2}}{2} \text { then: } \\
\frac{\ddot{\theta}}{\omega_{n}^{2}}+\frac{\dot{\theta} 2 \zeta}{\omega_{n}}+\theta=\theta_{\mathrm{ref}}+\frac{2 \zeta}{\omega_{n}} \dot{\theta}_{\mathrm{ref}}
\end{gathered}
$$

Note that ω is the frequency of relative phase swing or variation between the input signal and VCO frequency once the loop is locked. The lock-up time is give approximately by:

$$
t \approx \frac{4 \delta \omega^{2}}{B^{3}}
$$

$\delta \omega$ is the initial frequency difference and B is the loop bandwidth $=K_{o} K_{p} K_{F}$.
FM radio LO with quartz crystal reference:

$\frac{f_{\text {ref }}}{M}=\frac{f_{\text {out }}}{N}$
7.3 Demodulation Circuits

Amplitude modulation:

Frequency and phase modulation: Band edge filters (slope detectors) can convert
FM to AM. A pair of matched inverse linear slope filters can be used for a linear response.

8 Transmission Lines

8.1 Characteristic Impedance

For a transmission line with $L=$ inductance per unit length and $C=$ capacitance per unit length, the wave velocity is given by:

$$
v=\frac{1}{\sqrt{L C}}
$$

The characteristic impedance is:

$$
Z_{0}=\sqrt{\frac{L}{C}}
$$

The phase constant is:

$$
\beta=2 \pi / \lambda
$$

The voltage/field reflection coefficient is:

$$
\rho=\left|\frac{Z_{L}-Z_{0}}{Z_{L}+Z_{0}}\right|
$$

The power reflection coefficient $P=\rho^{2}$. The input impedance for a length of transmission line terminated with a given impedance is:
$Z_{\text {in }}=Z_{0}\left(\frac{Z_{L}+Z_{0} j \tan \beta L}{Z_{0}+Z_{L} j \tan \beta L}\right)$
8.2 Controlled Impedance

For a Microstrip line with width w and dielectric thickness d, the capacitance per unit length of the line is estimated ber:

$$
C=(w+2 d) \frac{\epsilon_{0} \epsilon_{r}}{d}
$$

The speed of light in the dielectric is:

$$
v=\frac{1}{\sqrt{\epsilon_{0} \epsilon_{r} \mu_{0}}}=\frac{c_{0}}{\sqrt{\epsilon_{r}}}
$$

The characteristic impedance of the Microstrip is given by:

$$
z_{0}=\frac{1}{v C}=\frac{d}{w+2 d} \cdot \frac{1}{c_{0} \epsilon_{0} \sqrt{\epsilon_{r}}}
$$

8.3 Impedance Matching

X_{p} shunts R_{hi} and $X_{\mathcal{S}}$ series R_{lo}.

$$
\begin{aligned}
Z_{\mathrm{in}} & =X_{s}+\frac{R_{\mathrm{hi}} X_{p}}{R_{\mathrm{hi}}+X_{p}} \\
& =j \omega L+\frac{R_{\mathrm{hi}}-j \omega C R_{\mathrm{hi}}^{2}}{\left(1+\omega^{2} c^{2} R_{\mathrm{hi}}^{2}\right)}
\end{aligned}
$$

If $L=\frac{C R_{\mathrm{hi}}^{2}}{\left(1+\omega^{2} C^{2} R_{\mathrm{hi}}^{2}\right)}$ then:

$$
Z_{\mathrm{in}}=\frac{R_{\mathrm{hi}}}{\left(1+\omega^{2} C^{2} R_{\mathrm{hi}}^{2}\right)}
$$

With $\omega^{2}=\frac{C R_{\mathrm{hi}}^{2}-L}{L C^{2} R_{\mathrm{hi}}^{2}}$:

$$
Z_{\mathrm{in}}=\frac{R_{\mathrm{hi}}}{C R_{\mathrm{hi}}^{2} / L}=\frac{L}{C R_{\mathrm{hi}}}
$$

We can make $\operatorname{Re}\left(R_{\text {hi }} \| X_{p}\right)<R_{\text {hi }}$ and cancel any $\operatorname{Im}\left(R_{\text {hill }} \| X_{p}\right)$ with a series X_{s}. The sharpness of the response is given by the Q factor.

$$
Q=\frac{R_{\mathrm{hi}}}{X_{p}}=\frac{X_{S}}{R_{\mathrm{lo}}}=\sqrt{\frac{R_{\mathrm{hi}}}{R_{\mathrm{lo}}}-1}
$$

The effective Q_{f} is half the filter Q. The
half power bandwidth B is given by:

$$
B=\frac{2 f_{0}}{Q}=\frac{f_{0}}{Q_{f}}
$$

9 Antennas

9.1 The Ideal Dipole

The total power radiated from an ideal dipole is:

$$
P_{r}=40 \pi^{2} I^{2}\left(\frac{\Delta z}{\lambda}\right)^{2}=\frac{1}{2} I^{2} R_{r}
$$

R_{r} is the radiation resistance.

$$
R_{r}=80 \pi^{2}\left(\frac{\Delta z}{\lambda}\right)^{2}
$$

The radiation efficiency is given by:

$$
\begin{gathered}
e=\frac{P_{r}}{P_{\text {in }}} \\
P_{\text {in }}=\frac{1}{2} I^{2}\left(R_{r}+R_{\text {ohmic }}\right)
\end{gathered}
$$

Gain is the maximum power radiated per unit area divided by power per unit area from isotropic antenna.

$$
G=\frac{P_{\max } / \text { unit area }}{P_{\mathrm{in}} / 4 \pi r^{2}}
$$

The directivity gives an indication of how directional an antenna is:

$$
D=\frac{G}{e}
$$

The power delivered into a matched load by an antenna is the product of effective aperture A_{e} and the power density in incident radio wave.
Antenna equation:

$$
G=\frac{4 \pi A_{e}}{\lambda^{2}}
$$

The current is carried only by an outer layer of thickness, δ, within the surface of a conductor where the skin depth, δ, is given by:

$$
\delta=\sqrt{\frac{2}{\omega \mu \sigma}}
$$

μ is the magnetic permeability and σ is the metal conductivity ($\sigma=1 / \rho$, resistivity).
9.2 Practical Antennas

Any antenna can be made up by integrating the ideal dipole, with appropriate current distributions, over the antenna structure.

$$
R_{r}=20 \pi^{2}\left(\frac{\Delta z}{\lambda}\right)^{2}
$$

For cosine distribution:

$$
R_{r}=30 \pi^{2}\left(\frac{\Delta z}{\lambda}\right)^{2}
$$

Consider an antenna with length L and diameter d.

$$
\begin{gathered}
R_{\text {ohmic }}=\frac{\rho L}{A}=\frac{\rho L}{\pi d \delta} \\
e=\frac{R_{r}}{R_{r}+R_{\text {ohmic }}}
\end{gathered}
$$

