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1 Inventory Management
1.1 Inventory System
Inventory is a physical resource that a
firm holds in stock with the intent of sel-
ling it or transforming it into a more va-
luable state.
Inventory system is a set of policies and
controls that monitor levels of invento-
ry and determine what levels should be
maintained, when stock should be reple-
nished, and how large orders should be.
Decisions:

1. Order quantity (Q): How much
should we order?

2. Reorder point (ROP ; R): When
should we place an order?

3. Safety stock (SS): How much safety
stock should we maintain?

Objectives:

1. Maximize the level of customer ser-
vice by avoiding understocking.

2. Minimize the cost of providing
an adequate level of customer ser-
vice.

3. Maximize the profit.

The Inventory Cycle:

1.2 Inventory Management Under De-
terministic Demand

Batch Sizing: Determination of Q when
ordering.

1. Using a large order size (i.e., or-
dering infrequently): we suffer a
large inventory holding cost.

2. Using a small order size (i.e., orde-
ring frequently): we suffer a large
fixed cost of ordering.

The order quantity that minimizes the to-
tal cost per period is called the Economic
Order Quantity (EOQ).
Total Cost Formula:

1. The holding cost depends on ave-
rage stock: Q/2.

2. Ordering cost depends on number
of orders per period: D/Q.

The total cost per period formula as a
function of the batch size ordered (Q):

T (Q) =
Q
2
CH +

D
Q
CO

D is the demand per period, Q is the
batch (lot) size, CO is the (fixed) cost of
placing one order and CH is the cost of
holding one item in store for one period
(financing and physical storage).

Find the Q∗ that minimizes T (Q):

EOQ =Q∗ =

√
2D

Co
CH

Reorder Point: The point in time by which
stock must be ordered to replenish inven-
tory before a stockout occurs.

R = dL+ SS

R is the reorder point, d is the average de-
mand per time period (constant), L is the
number of time periods between placing
order and delivery and SS is the safety
stock.
1.3 Inventory Management Under Sto-

chastic Demand
(Q,R) Decisions:

1. We choose R to meet the demand
during lead time.

2. Tradeoff in Q: Fixed cost versus
holding cost.

Demand is random and stationary. Expec-
ted demand is λ per unit time.

We assume that D represents the demand
during the lead time and has probability
distribution f (x) with mean µ and stan-
dard deviation σ . Average inventory le-
vel before an order arrives is s = R − µ.

T =
Q
λ

Expected shortage per cycle is:

n(R) =
∫ R

0
0f (x)dx+

∫ ∞
R

(x −R)f (x)dx

=
∫ ∞
R

(x −R)f (x)dx = σL
(R−µ
σ

)
Standard loss function L(z) = φ(z)− z(1−
Φ(z)).
(Q,R) Model: The expected total cost per
unit time = fixed cost + holding cost +
stockout (backorder) cost.

C(Q) = h
(
s+

Q
2

)
+
K
T

+ p
n(R)
T

= h
(Q

2
+R−λL

)
+K

λ
Q

+ p
λn(R)
Q

K is the setup cost per order, h is the hol-
ding cost per unit per unit time, c is the
purchase price (cost) per unit and p is
the penalty cost per unit of unsatisfied
demand.
Optimal solution:

Q =

√
2λ[K + pn(R)]

h

F(R) = 1− Qh
pλ

1.4 Newsvendor Model
Newspapers are perishable and daily sales
are represented by the random variable
D.

Newsvendor Model: The expected cost =
total overage (not enough demand) + un-
derage cost (too much demand):

G(Q,D) =

comax(0,Q −D) + cumax(0,D −Q)

co is the unit cost of overage and cu is the
unit cost of underage.
The expected cost function G(Q) =
E[G(Q,D)] is given by:∫ Q

0
co(Q − x)f (x)dx+

∫ ∞
Q
cu(x −Q)f (x)dx

The optimal order quantity Q∗ satisfy:

F (Q∗) =
cu

cu + co
[= P (D ≤Q∗)]

2 Decision Analysis
2.1 Decision-making Framework
Different decisions rules lead to different
optimal actions based on payoff tables:

1. Maximax: Maximize the maximum
payoff (i.e., under the best-case sce-
nario). High risk, high return stra-
tegy.

2. Maximin: Maximize the minimum
payoff (i.e., under the worst-case
scenario). Low risk, low return
strategy.

3. Maximize Expected Monetary Value
(EMV) using the probabilities for
each state of nature.

2.2 Decision Trees
Structure problem as a sequence of deci-
sions and outcomes:

Best decision: Roll the payoffs back from
the leaves to the root of the tree based on
decision rules such as:

1. To overcome an event node, find
average payoff over all possible
events.

2. To overcome a decision node, take
decision with maximum payoff.

Results in action plan for each future con-
tingency with expected monetary value or
payoff (EMV).

2.3 Sensitivity Analysis
If the values for purchases, profits and
probabilities are not accurate, we can as-
sume that the probability is p. The opti-
mal decision then depends on the proba-
bility p.
2.4 Expected Value of Perfect Informa-

tion
Expected value of perfect information (EV-
PI): The maximum amount willing to pay
to know the future.

EVPI = EMV w/ PI−EMV

Expected value of sample/imperfect infor-
mation (EVSI): The maximum amount
willing to pay to get an expert’s opinion
given his/her ability to understand the
environment, denoted by q.
Let a be the event that the expert says A
and b the event that the expert says B.
Bayes’ Rule: Given P (a | A) = q1 and
P (b | B) = q2:

P (A | a) =
P (a | A)P (A)

P (a)

=
P (a | A)P (A)

P (a | A)P (A) + P (a | B)P (B)

2.5 Risk Attitude
Risk attitude can be captured by utility
functions.

A risk averse decision maker assigns the
largest relative utility to any payoff but
has a diminishing marginal utility for in-
creased payoffs.
A risk seeking decision maker assigns the
smallest utility to any payoff but has an
increasing marginal utility for increased
payoffs.
A risk neutral decision maker falls in
between these two extremes and has a
constant marginal utility for increased
payoffs.
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3 Dynamic Programming
3.1 Stagecoach Problem
The greedy algorithm is fast with comple-
xity of O(NK), where N and K are the
number of stages and number of nodes
in each stage, respectively. However, it
does not guarantee optimality.
An exhaustive search can guarantee an op-
timal solution, but it is time consuming
with complexity of O

(
KN

)
.

The dynamic programming approach is
based on backward inductions starting
at the last stage and it guarantees an
optimal solution with complexity of
O

(
NK2

)
:

1. Start from the last stage and work
backward.

2. At each node of a particular stage,
find an optimal route to location
J based on the optimal routes to
location J from the child nodes of
the current node.

3. The algorithm terminates when
the first stage is done.

3.2 Sequential Decision Models
System dynamics:

• n: stage index
• sn: state of the system in stage n

• sn+1 = gn (sn,xn): state transition
(how the system state moves from
stage n to stage n+ 1 if action xn is
taken in stage n)

• cn (sn,xn): system cost in stage n

• cN (sN ): system cost in stage N

The system optimization problem is the
following minimization problem:

min
xn

cN (sN ) +
N−1∑
n=0

cn (sn,xn)

Define new reward-to-go functions:

fn (sn,xn) = cn (sn,xn) + f ∗n+1 (gn (sn,xn))

f ∗n (sn) = min
xn

fn (sn,xn)

We obtain an optimality condition (Bell-
man equation):

f ∗n (sn) = min
xn

cn (sn,xn) + f ∗n+1 (gn (sn,xn))

3.3 Deterministic Dynamic Program-
ming

Dynamic Programming is based on the
principle of optimality: A truncated opti-
mal solution is also an optimal solution
to the truncated sub-problem.
In deterministic dynamic programming,
a pair of state and action in stage n leads
to a unique state in stage n+ 1.
The optimality conditions are:

f ∗n (sn) =

min
xn∈Un

cn (sn,xn) + f ∗n+1 (gn (sn,xn))

The constraints in stage n are defined by
Un.
3.4 Probabilistic Dynamic Program-

ming
In probabilistic dynamic programming,
the state in stage n+ 1 is governed by a
probability distribution pnt (sn,xn) that
is completely determined by state s and
action x in stage n.
In the optimality equations, we solve an
optimization problem by minimizing the
expected value:

f ∗n (sn) = min
xn

S∑
t=1

pnt (sn,xn)
(
cn (sn,xn, t) + f ∗n+1(t)

)
When S = 1, we recover deterministic dy-
namic programming.
4 Markov Chains
4.1 Stochastic Processes
Stochastic process is a collection of in-
dexed random variables (RVs) Xt , t ∈ T
which are typically statistically depen-
dent.
State space is the set of possible values of
Xt ’s.
4.2 Discrete Time Discrete State Sto-

chastic Processes
Discrete space: Xt ’s are discrete RVs
{X1,X2,X3, . . .}.
Discrete time: T = {0,1,2,3, . . .}.
Markovian property: The probabilities
that govern a transition from state i at
time t to state j at time t + 1 only depend
on the state i at time t and not on the
states the process was in before time t.

P(Xt+1 = j | X0 = i0, . . . ,Xt = it)

= P(Xt+1 = j | Xt = it)

Transition probabilities are called statio-
nary if:

P(Xt+1 = j | Xt = i) = P(X1 = j | X0 = i)

The stationary transition probabilities
are conveniently stored in a transition
matrix.

Pij = P(X1 = j | X0 = i)

4.3 Markov Chains
MC is completely characterised by transi-
tion probabilities Pij from state i to state
j that are stored in an n × n transition
matrix P .
Rows of transition matrix sum up to 1.
Such a matrix is called a stochastic matrix.
Initial distribution of states is given by
an initial probability vector:

q(0) =
(
q

(0)
1 , . . . , q

(0)
n

)
Chapman-Kolmogorov Equations: The n-

step transition probabilities P
(n)
ij =

P (Xn = j | X0 = i) obey the following law
(for arbitrary 0 < m < n):

P
(n)
ij =

∑
k

P
(n−m)
kj P

(m)
ik

The n-step transition probability matrix
P (n) is the n-th power of the 1-step tran-
sition probability matrix P :

P (n) = P n

4.4 The Transition Network
A stochastic matrix is said to be irredu-
cible if each state is accessible from each
other state.
Classes of States: State i and j commu-
nicate if i is accessible from j and j is
accessible from i. Communicating states
form classes. The state space may be par-
titioned into disjoint classes.

A class is called absorbing if it is not pos-
sible to escape from it.
A class A is said to be accessible from a
class B if each state in A is accessible
from each state in B.
4.5 First Passage Times
The first passage time from state i to state
j Hij is the number of transitions until
the process hits state j if it starts at state
i.
Define fij (k) = P

(
Hij = k

)
, probability

that the first passage from state i to state
j occurs after k transitions.
The expected first passage time is

E

(
Hij

)
= fij (1) + 2fij (2) + 3fij (3) + . . .

The law of total probability gives:

P
(n)
ij = P

(n−1)
jj fij (1) + · · ·

+ Pjjfij (n− 1) + fij (n)

Hence P
(n)
ij =

∑
k P

(n−k)
jj fij (k) results in

the recursive formula:

fij (1) = Pij

fij (2) = P
(2)
ij − fij (1)Pjj

...

The law of total probability shows:

E

(
Hij

)
=

∑
k

E

(
Hij | Ck

)
Pik

= Pij +
∑
k,j

(
1 +E

(
Hkj

))
Pik

= 1 +
∑
k,j

E

(
Hkj

)
Pik

Hence, we can find expected first passage
times by solving systems of equations.
4.6 Long-Term Behaviour
Distribution of Xn: The probability vector
for Xn is:

q(n) = q(n−1)P = . . . = q(0)P (n)

As n tends to infinity:

lim
n→∞

q(n) = lim
n→∞

q(0)P (n) = q(0) lim
n→∞

P (n)

The limit may not exist when the process
has periodic behaviour. Period of a state

i is equal to the greatest common divisor

of n such that P
(n)
ii > 0

Aperiodicity: A state with period 1 is cal-
led aperiodic. State i is aperiodic if and
only if there existsN such that Pii (N ) > 0

and P
(N+1)
ii > 0.

4.7 Steady-State Distributions
Aperiodicity is a class property, i.e., if
one state in a class is aperiodic, then so
are all others.
If a Markov chain is irreducible and ape-
riodic, then all limits exist:

P ij = lim
n→∞

P
(n)
ij

All rows of its long-term transition pro-
bability matrix P are identical to the uni-
que solution π = (π1, . . . ,πm) of the equa-
tions:

πP = π,
m∑
i=1

πi = 1

The probability vector π is called the
steady-state (or stationary) probability dis-
tribution of the Markov chain.
If process hits state i, a payoff of g(i) is
realized, then the average payoff per pe-
riod after n transitions is:

Yn =
g (X1) + . . .+ g(Xn)

n

Long-run expected average payoff per ti-
me period:

lim
n→∞

E (Yn) =
m∑
j=1

πjg(j)

5 Queueing Theory
5.1 Queueing System
Components of a queueing system:

1. Arrival: Customers enter the queu-
eing system and join a queue.

2. Queue discipline: A member of the
queue is selected for service by so-
me rule.

3. Service: The customer is served be-
fore leaving the queueing system.

Main uncertainty drivers are interarrival
times (times between the arrival of custo-
mers) and service times (times for service
of a customer).
The number of customers in the system
at time t, N (t), is called the state of the
system at time t.
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Kendall’s notation: Simple queueing sys-
tems are conventionally labelled by:

• U : interarrival distribution
• V : service time distribution (most

commonly used notation: D for
deterministic, M for exponential,
and G for general distribution)

• s: number of servers
• κ: capacity (maximum number of

customers in service and queue)

• W : queueing discipline (e.g., FIFO,
LIFO, priority based)

5.2 Arrival and Service Processes
The arrival rate λ is the expected number
of arrivals per unit time. The expected
time between two arrivals is 1/λ.
The service rate µ is the expected number
of customers that can be served by one of
the servers per unit time. The expected
service time per customer is 1/µ.
In a Poisson arrival process with arrival
rate λ, the probability for k customers to
arrive in [0, t] is:

P (X = k) =
(λt)ke−λt

k!

The sequence of interarrival times Tn de-
notes the elapsed time between the (n−1)-
th and the n-th event.
In an exponential service process with ser-
vice rate µ, the probability density func-
tion for service time is:

f (t) = µe−µt

The probability that the service time T is
less than some t is

P (T ≤ t) = 1− e−µt

If T is exponentially distributed, then T
has the lack of memory property:

P (T > t + s | T > s) = P (T > t)

The minimum property: If T1, . . . ,Tn are
independent and exponentially distribu-
ted random variables with parameters
λ1, . . . ,λn then T = min {T1, . . . ,Tn} is ex-
ponentially distributed with parameter
λ = λ1 + . . .+λn.
Disaggregation of arrival processes: Consi-
der customers arriving with exponential
interarrival times at rate λ. There are n

types of customers with pi being the pro-
bability that a customer of type i arrives.
Then the interarrival times of customers
of type i are exponentially distributed
with parameters λi = piλ.
Utilization:

ρ =
λ
sµ

5.3 Steady-State Metric
After sufficient time has elapsed, the
state of the system becomes essentially
independent of the initial state and the
elapsed time.
Pn is the probability of exactly n custo-
mers in the system.
The expected number of customers in the
system is:

L =
∞∑
n=0

nPn

The expected queue length (excludes cu-
stomers being served) is:

Lq =
∞∑
n=s

(n− s)Pn

W is the expected waiting time in the
system (includes service time) for each
individual customer.
Wq is the expected waiting time in the
queue (excludes service time) for each
individual customer.

W =Wq +
1
µ

Little’s Formula: In steady state the ex-
pected queue length when a customer
arrives is the same as the expected queue
length when leaves the queue:

Lq = λWq, L = λW

If the system is in steady state, then the
distribution characterized by the proba-
bility mass function pn = P (N = n) is cal-
led the steady-state distribution.

pn = lim
t→∞

P (N (t) = n)

5.4 Birth-and-Death Processes
Given time t and state N (t) = n, the pro-
bability distribution of the remaining ti-
me until the next birth or death is expo-
nential with parameter λn and µn respec-
tively.

The random variables are mutually in-
dependent and the process is in steady
state.
Define En and Ln to be the rate (average
number of events per unit time) at which
the system enters and leaves state n, re-
spectively.

En = Ln

pn can be interpreted as the proportion
of time the process is in state n.

En = pn−1λn−1 + pn+1µn+1

Ln = pn (λn +µn)

Applying equality for every state:

µ1p1 = λ0p0
µn+1pn+1 = λnpn, n ≥ 1

Steady-state probabilities:

pn = cnp0, cn =
λ0λ1 . . .λn−1
µ1µ2 . . .µn

Notice that p0 + p1 + p2 + . . . = 1:

p0 =
1

1 + c1 + c2 + · · ·

pn =
cn

c0 + c1 + c2 + · · ·

5.5 Queues
M/M/1: the arrival process is Poisson,
the service time is of an exponential dis-
tribution, and there is only one server.

For the M/M/1 system, we have λn =
λ,µn = µ for all n.

cn =
(
λ
µ

)n
= ρn

p0 =
1

1 + ρ+ ρ2 + . . .
= 1− ρ

pn = cnp0 = (1− ρ)ρn

Average number of customers in the sys-
tem, L:

L =
∞∑
i=0

ipi =
∞∑
i=0

iρi (1− ρ) =
ρ

1− ρ

Average queue length, Lq:

Lq =
∞∑
i=1

(i−1)pi =
ρ

1− ρ
−(1− p0) =

ρ2

1− ρ

Average time customers spend in the sys-
tem, W :

W =
ρ

(1− ρ)λ
=

1
µ(1− ρ)

Average waiting time, Wq:

Wq =W − 1
µ

=
ρ

µ(1− ρ)

M/M/s : the arrival process is Poisson,
the service time is of an exponential dis-
tribution, and there are s servers.

For the M/M/s system, µn = nµ for n < s
and µn = sµ for n ≥ s.

p0 =
1∑s−1

n=0
(λ/µ)n
n! + (λ/µ)s

s!

(
sµ
sµ−λ

)
pn =

 (λ/µ)n

n! p0 if O ≤ n ≤ s
(λ/µ)n

s!sn−s p0 if n ≥ s

Lq =
(

(λ/µ)s+1

(s − 1)!(s −λ/µ)2

)
p0

6 Regression Analysis
6.1 Linear Regression Model
The relationship/equation that describes
how the dependent variable y is related
to an independent variable x and an error
term ε ∼N (0,σ2) is called the regression
model.

y = α + βx+ ε

α and β are parameters of the model, cal-
led the intercept and the slope, respec-
tively.
Curve fitting: Find parameters a and b
such that the deviations between model

predictions a + bxi and observations yi
are small at all data points. A popular
criteria is the error sum of the squares
(ESS).
Forecast errors or residual errors or devia-
tions for an example line:

ei = a+ bxi − yi

6.2 Least Squares Method
Least squares criterion:

min
a,b

ESS(a,b) =
n∑
i=1

(a+ bxi − yi )2

Optimality conditions: Least square solu-

tion when ∂ESS(a,b)
∂a

= ∂ESS(a,b)
∂b

= 0.

a+ bx = y

Hence the line of best fit y = a+bx passes
through the average point (x,y).

x =
∑
xi
n

; y =
∑
yi
n

The optimal parameters are given by:

b =
∑
xi (yi − y)∑
xi (xi − x)

a = y − bx

6.3 Correlation
The correlation coefficient R is a measure
of the strength of the linear relationship
between two variables.

R =
Sxy√
SxxSyy

The variance and the covariance of X and
Y are given by:

SXX =
n∑
i=1

(xi − x)2 ; SYY =
n∑
i=1

(yi − y)2

SXY =
n∑
i=1

(xi − x) (yi − y)

The bigger |R| is, the stronger linear rela-
tionship between the two variables is.
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6.4 Error Decomposition
Partition of the total sum of squares: To-
tal sum of squares (TSS) = error sum of
squares (ESS) + regression sum of squa-
res (RSS).

n∑
i=1

(yi − y)2 =
n∑
i=1

(yi − ŷi )2 +
n∑
i=1

(ŷi − y)2

The R2 statistic (the coefficient of de-
termination) indicates how well an esti-
mated regression function fits the da-
ta. It measures the proportion of the to-
tal variation in the dependent variable y
around its mean that is accounted for by
the independent variable in the estima-
ted regression equation.

R2 =
RSS
T SS

= 1− ESS
T SS

=
S2
xy

SxxSyy

6.5 Statistics and Regression
In statistics, confidence interval estimates
replace point estimates so that we obtain
more reliable estimates for population
means and population proportions.
For a standard normal distribution (or
a t-distribution), the middle area in the
graph below is the confidence level and
the area of the two tails is the significan-
ce level:

In statistics, we conduct hypothesis testing
to test theories and claims based on the
data.
Framework for conducting hypothesis
testing (the population mean):

1. Assume m is the sample mean and
µ is the population mean.

2. Make a null hypothesis H0: m = µ,
and an alternative hypothesis H1:
m , µ.

3. Select a significance level α and find
out its critical value z.

4. Calculate test statistic: t = (m −
µ)/SE, where SE = σ/n1/2.

5. Reject H0 if the absolute value of
t is larger than the z-value. Other-
wise, do not reject H0.

In regression analysis, the t-statistic for
the slope is calculated based on the null
hypothesis that the slope is equal to zero
and p-value is equal to the tail probabi-
lity. For a regression equation to be mea-
ningful or significant, we want to see a
large value of t-statistic and a small va-
lue of p value for the slope. Equivalently,
we want to see that zero is outside of so-
me relevant confidence interval for the
slope.
The standard error measures the scatter
in the actual data around the estimate re-
gression line. It is an unbiased estimated
value for the parameter σ, the variance
of the error term.

Se =

√∑n
i=1 (yi − (a+ bxi ))

2

n− 2

It can be proved that (b−β)/Sb is of a Stu-
dent’s t-distribution with n−2 degrees of
freedom.

Sb = Se/

√√ n∑
i=1

(xi − x)2

7 Forecasting
7.1 Multiple Linear Regression
Multiple linear regression relates a de-
pendent variable y to more than one in-
dependent variables {x1,x2, . . . ,xk} and
the noise e which is of a normal distribu-
tion that is independent of independent
variables. The multiple linear regression
model is:

y = α + β1x1 + β2x2 + . . .+ βkxk + e

α represents the intercept and β’s are the
coefficients of the contribution by the in-
dependent variables.
If two independent variables correlate
strongly with each other, they are nearly
collinear and we should not include both
as explanatory variables.
Multiple regression process:

1. Backward elimination: Starting
with all variables included, test
each of these variables for a si-
gnificant relationship with the
dependent variable and remo-
ve the variable with the largest
p-value.

2. Forward selection: Start with one or
more variables included, test each
of these variables for a significant
relationship with the dependent
variable Add the variable with a
small p-value.

3. Stepwise selection: A combination
of both forward selection and back-
ward elimination.

Spurious correlation: Correlation does not
imply causation. Two variables are sta-
tistically correlated, but have no causal
connection in reality.
Simpson paradox: The correlation coeffi-
cient sign for the whole data set is diffe-
rent from the correlation coefficient signs
for two or more subsets.
7.2 Time Series Forecasting
Given historical observations over time
of some quantity of interest (a random
variable), we study typical statistical pro-
perties:

1. Trend: Long term direction.
2. Seasonality: Repeating patterns.

3. Cycle: Economic cycles.

4. Correlations:

We predict future based on historical ob-
servations.
Moving Average: The general formula for
m-period moving average is:

Ft =
Xt−m + . . .+Xt−2 +Xt−1

m

We define et = xt−Ft as the forecast error
in period t.
Measures of forecast error over n periods:

1. Mean Absolute Deviation (MAD):

MAD =

∑n
i=1 |ei |
n

2. Mean Squared Error (MSE):

MSE =

∑n
i=1 e

2
i

n

3. Mean Absolute Percentage Error
(MAPE):

MAPE =

∑n
i=1 |ei | /xi
n

Exponential smoothing: The smoothed
average of period t is equal to the weigh-
ted average of the current observation
and the smoothed average in the most
recent past time period.

Et = αXt + (1−α)Et−1

= Et−1 +α (Xt −Et−1)

α ∈ (0,1) is called the smoothing parame-
ter. The prediction equation (k-step) is
Ft+k = Et .
The weights in exponential smoothing:

Et = (1−α)k+1Et−k−1+

α
[
Xt + (1−α)Xt−1 + . . .+ (1−α)kXt−k

]
The forecast of exponential smoothing
takes all past observations into account
by giving more weights on more recent
observations (the weight decreases expo-
nentially back in time).
Winters’ multiplicative smoothing:

1. Base:

Et = α
Xt
St−c

+ (1−α) (Et−1 + Tt−1)

2. Trend:

Tt = β (Et −Et−1) + (1− β)Tt−1

3. Seasonality:

St = γ
Xt
Et

+ (1−γ)St−c

Prediction equation (k-step):

Ft+k = (Et + kTt)St+k−c

α,β,γ ∈ (0,1) are given smoothing para-
meters. c is the number of seasons.
Winters’ additive smoothing:

Et = α (Xt − St−c) + (1−α) (Et−1 + Tt−1)

Tt = β (Et −Et−1) + (1− β)Tt−1

St = γ (Xt −Et) + (1−γ)St−c

Here seasonality is used as an addition
rather than a multiplier.

Ft+k = Et + kTt + St+k−c

Exponential smoothing with trend:

Et = αXt + (1−α) (Et−1 + Tt−1)

Tt = β (Et −Et−1) + (1− β)Tt−1

Ft+k = (Et + kTt)

Exponential smoothing with multiplicative
seasonality:

Et = α
Xt
St−c

+ (1−α)Et−1

St = γ
Xt
Et

+ (1−γ)St−c

Ft+k = EtSt+k−c

Exponential smoothing with additive seaso-
nality:

Et = α (Xt − St−c) + (1−α)Et−1

St = γ (Xt −Et) + (1−γ)St−c

Ft+k = Et + St+k−c

7.3 Confidence Intervals
The square root of MSE is the standard
deviation of the forecast errors.
Assuming that the forecast errors are nor-
mally distributed and that past trends
continue into the future, there is a 95%
chance that a future value, when it oc-
curs, will be within approximately two
standard deviations of the point estimate
made in the time series forecasting me-
thod.
8 Portfolio Management
8.1 Markowitz Portfolio Analysis
The return rates are uncertain numbers
with mean (% per week) and variance σ2.
We can invest a proportion α between 0
and 1 of our money into D, and the rest
into N . Then we form a portfolio v such
that the uncertain portfolio value is:

v = αD + (1−α)N

The expected return of portfolio v is:

rv = αrD + (1−α)rN

The variance of portfolio v is:

σ2
v = α2σ2

D + (1−α)2σ2
N

+ 2α(1−α) [E(DN )− rD rN ]

Mean-variance diagram:
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8.2 E�icient Frontier
Portfolio is efficient if you cannot impro-
ve both return and risk at the same time.

Given any number x1, . . . ,xn of uncertain
numbers and any proportions α1, . . . ,αn
(non-negative and sum to 1) and corre-
sponding portfolio with value:

v = α1x1 + . . .+αnxn

Given mean ri of each xi , mean portfolio
value is:

rv = E(v) = α1r1 + . . .+αnrn

Risk of portfolio value, measured in va-
riance, is:

σ2
v = var(v) =

n∑
i=1

n∑
j=1

αiαj covar
(
xi ,xj

)
The efficient frontier can be found by
minimizing var(v) subject to rv ≥ r and
0 ≤ α1, . . . ,αn ≤ 1.
8.3 Hedging
Hedging relies on negative correlation
(statistical dependence) between x and
y. Hedging reduces risk with few invest-
ments.

Diversification relies many/several diffe-
rent investments that have some statisti-
cal independence. Diversification is ro-
bust to positive dependence.
8.4 Covariance and Variance of Portfo-

lios
Variance is not an ideal measure of risk.
It describes the risk of not being average.
Semi-variance describes the risk of loss.
Lower semi-variance:

semi-var(v) = E

(
min(v − rv ,0)2

)
Semi-variance equals 1/2 of variance if
distribution is symmetric.
8.5 Market Portfolio
If a riskless asset is added to the portfolio,
then investors can borrow and lend mo-
ney. Let rf be the riskless rate of return.
Then any point on the line that connects
a portfolio and the riskless asset forms a
new portfolio. Such a line is called capital
allocation line.

Let α = proportion allocated to risky
portfolio, P , and 1−α = proportion allo-
cated to risk-free asset, F.
The expected return of the complete port-
folio is:

E (rv) = α [E (rP )] + (1−α)rF
= rF +α [E (rP )− rF ]

Since σv = ασP , then α = σv
σP

. The equati-
on of the capital allocation line is:

E (rv) = rF +
σv
σP

[E (rP )− rF ]

The capital market line (CML) is the one
with the highest slope among all capital
allocation lines. The corresponding port-
folio on the efficient frontier is called the
market portfolio.

Any portfolio on the original efficient
frontier is dominated by some portfolio
on the capital market line.

Let
(
rf ,0

)
be the risk-free asset and

(rM ,σM ) be the market portfolio. A port-
folio (rv ,σv) on the capital market line
satisfies the following equation:

rv − rf =
rM − rf
σM

σv

8.6 Risk of an Asset
Total risk = specific risk + systematic
risk:

1. Specific risk is also known as un-
systematic, idiosyncratic risk. It is
firm-specific and can be diversi-
fied away when you hold a number
of assets.

2. Systematic risk is market-wide con-
ditions and not possible to diversi-
fy away.

Beta for an asset is used to measure the
risk that a security contributes to a diver-
sified portfolio.

βi =
covar(i,M)

σ2
M

=
covar(i,M)
σMσi

σi
σM

Beta for an asset can be obtained by con-
ducting simple regression analysis for
this asset (dependant variable) and the
market portfolio.
8.7 Capital Asset Pricing Model (CAPM)
The capital market line relates the expec-
ted rate of return of an efficient portfolio
to its standard deviation, but it does not
show the expected rate of return of an
individual asset relates to its individual
risk.
Capital Asset Pricing Model (CAPM): If
the market portfolio M is efficient, then
the expected rate of return ri of any asset
i satisfies:

ri − rf = βi
(
rM − rf

)

The Security Market Line (SML) is the line
of Beta vs. excess return ri − rf of assets
with a slope of rM − rf . It tells us the re-
ward for bearing a certain level of risk.

(The End)


