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1 Linear Algebra
1.1 Definitions
A vector space, often denoted by V , is a
‘family’ of vectors that obey some basic
rules. A vector v is an element of a vec-
tor space. A vector space must always
contain a zero vector.
A subspace of a vector space is a subset
that obeys the rules of a vector space.
A matrix A is a linear operator that per-
forms a linear transformation from one
vector to another:

Ax = b

The matrix A maps the vector x ∈ Cn to
the vector b ∈Cm:

A : Cn→C
m

An m × n matrix comes from the space
C
m×n, and we will often write A ∈Cm×n.

The conjugate transpose of a matrix:

AH = AT = AT

A matrix M ∈Cn×n is Hermitian if MH =
M.
The dot (or scalar) product is an opera-
tion between two equal-length vectors
that yields a scalar.

xHy =
n∑
i=1

xiyi = yHx

The dot product is sometimes called the
inner product 〈·, ·〉.
For an n×nmatrix A, (λ,x) is an eigenpair
of A if Ax = λx, where λ an eigenvalue of
A, and x is the corresponding eigenvector
of A.
The eigenvalues of a Hermitian matrix
are real and the eigenvectors of a Hermi-
tian matrix are orthogonal, i.e. uHi uj =

uHj ui = 0 when i , j.

A matrix Q ∈ C
n×n is a unitary matrix

if QH = Q−1, i.e. QHQ = QQH = I. If Q
was real, we would call it an orthogonal
matrix.
A Hermitian matrix M ∈ Cn×n is positive
definite if:

xHMx > 0 ∀x ∈Cn\0

The eigenvalues of a Hermitian positive
definite matrix are strictly positive (this
is a sufficient condition).

A Hermitian matrix M ∈ C
n×n is semi-

positive definite if:

xHMx ≥ 0 ∀x ∈Cn

The matrix AHA is positive semi-
definite.
The rank of a matrix A ∈ C

m×n is the
number of linearly independent rows or
columns (the number is equal). It satis-
fies rankA ≤ min(m,n). A matrix is full
rank if rankA = min(m,n) and rank defi-
cient if rankA <min(m,n).
A matrix in which most entries are zero
is a sparse matrix.
Vector norms: A particular family of
norms are known as lp -norms:

‖x‖p =

 n∑
i=1

|xi |p
1/p

The l∞ norm ‖x‖∞ = maxi |xi |.
We can define norms that involve a ma-
trix A,:

‖x‖2A = 〈x,Ax〉 = xHAx

A must be positive definite. The above
norm is often called the energy norm.
Operator norms: A norm of a matrix A is
defined as:

‖A‖ = max
x∈Cn\0

‖Ax‖
‖x‖

This norm measures the maximum
amount by which the matrix A can re-
scale a vector x.

‖Ax‖ ≤ ‖A‖‖x‖ ∀x

For ‖A‖2(2 -norm ):

‖A‖22 = max
x∈Cn\0

xHAHAx
xHx

= λmax
(
AHA

)
λmax

(
AHA

)
is the largest eigenvalue of

AHA. The norm ‖A‖2 is therefore the
square root of the largest eigenvalue of
AHA (the largest singular value of A). If
A is Hermitian ‖A‖2 = |λ|max(A).
Frobenius norm:

‖A‖F =
√∑

i

∑
j

∣∣∣aij ∣∣∣2
The Frobenius norm is also invariant un-
der rotation, ‖QA‖F = ‖A‖F where Q is a
unitary matrix.

The condition number of a matrix A is:

κ(A) = ‖A‖
∥∥∥A−1

∥∥∥
For the 2-norm, since the eigenvalues of
A−1 are the reciprocal of the eigenvalues
of A:

κ2(A) =

√
λmax

(
AHA

)
√
λmin

(
AHA

)
If A is Hermitian,

κ2(A) =
|λ(A)|max
|λ(A)|min

1.2 Stability
Consider the problem A(x+ δx) = b+ δb
where δb is the error in the RHS and δx
is the consequent error in the solution.

‖δx‖
‖x‖
≤ ‖A‖

∥∥∥A−1
∥∥∥ ‖δb‖
‖b‖

= κ(A)
‖δb‖
‖b‖

For large condition numbers we can ex-
pect small errors in b to cause large er-
rors in x. A matrix with a large condition
number is said to be ill-conditioned.
1.3 Interpolation
Interpolation is fitting a function to a
data set that passes through the data
points. If we have n data points f =
[f1 (x1) , . . . , fn (xn)]T in a one dimensio-
nal space, we can usually fit a polynomial
with n coefficients of the form:

f (x) = c0 + c1P1(x) + . . .+ cn−1Pn−1(x)

We can solve the matrix equation Ac = f:
1 P1(x1) · · · Pn−1(x1)
...

...
...

...
1 P1(x1) · · · Pn−1(xn)




c0
...

cn−1


= [f1 (x1) , . . . , fn (xn)]T

The matrix A is known as the Vander-
monde matrix. It is a notoriously ill-
conditioned matrix, and the conditi-
on number grows with increasing po-
lynomial degree using monomial base
1,x,x2, . . . ,xn−1.
The Legendre polynomials on the interval
[−1,1]:

(n+ 1)Pn+1(x) = (2n+ 1)xPn(x)−nPn−1(x)
P0 = 1 and P0 = x

The special feature of Legendre polyno-
mial is that:∫ 1

−1
Pm(x)Pn(x)′dx = 0 if m , n

Legendre polynomials of different degree
are orthogonal to each other. The Legend-
re Vandermonde matrix is considerably
better conditioned.
Polynomial interpolation can lead to os-
cillations towards the end of the inter-
val known as the Runge effect. We can
mitigate the Runge effect by using non-
equispaced sampling points, and parti-
cularly good points are the roots of some
orthogonal polynomials.
1.4 Data Fitting
To find a solution to the problem Ax = b,
the vector b must lie in the column space
of A. If A is an m×n matrix and m > n (a
skinny matrix), we have more equations
than unknowns and in general there will
be no solution.
For some vector x̂, we can define a resi-
dual vector r:

r = Ax̂−b

Find x̂ that minimises the residual r in
the chosen norm:

min
x̂∈Cn

‖r(x̂)‖ = min
x̂∈Cn

‖Ax̂ −b‖

If we use the l2-norm for the problem,
we seek minx̂∈Cn ‖Ax̂−b‖2.

x̂ =
(
AHA

)−1
AHb = A+b

The matrix A+ =
(
AHA

)−1
AH is known

as the pseudoinverse or the Moore-Penrose

inverse. The inverse
(
AHA

)−1
can be com-

puted when A is full rank.
1.5 Iterative Methods for Linear Sys-

tems
Power iteration: An iterative method for
finding the eigenvector associated with
the largest absolute eigenvalue of a ma-
trix. Since a vector x ∈Cn can be expres-
sed in terms of the n eigenvectors of an
n×nmatrix x =

∑n
i=1αiui , if we multiply

x repeatedly by A:

Akx =
n∑
i=1

αiλ
k
i ui

If the largest eigenvalue is distinct the
resulting vector will be aligned with

the eigenvector of the largest eigenva-
lue. To find an estimate of the corre-
sponding eigenvalue λ? , we could pose
a minimisation problem in the l2-norm
minλ?∈C

∥∥∥Ax−λ?x∥∥∥2. This is minimised
when:

λ? = R(A,x) =
xHAx
xHx

R is known as the Rayleigh quotient.
A family of stationary methods for finding
approximate solutions to Ax = b involves
decomposing the matrix operator such
that A = N−P and computing an appro-
ximate solution xk+1:

Nxk+1 = b+Pxk

The process is then repeated to hopeful-
ly converge to the exact solution. Classic
examples of splitting A include:

1. Richardson iteration: N = I.

2. Jacobi method: N = diag(A).

3. Gauss-Seidel: N = L(A) is the lower
triangular part of A (including the
diagonal).

Defining the error at the kth iteration
ek = xexact − xk :

ek =
(
N−1P

)k
e0

The method will converge only if the ab-
solute value of every eigenvalue is less
than one. The largest absolute eigenva-
lue of a matrix A is often denoted by
ρ(A) and is known as the spectral radius.
The stationary methods based on split-
ting will converge if:

ρ
(
N−1P

)
< 1

The conjugate gradient (CG) method is
a Krylov subspace method. Consider that
we have a set of n non-zero vectors P =
{p0,p1, . . . ,pn−1} that are A-conjugate:

pHi Apj = 0 if i , j

Using P as a basis for the solution of
Ax = b, where A is a n × n Hermitian
positive-definite matrix:

x =
n−1∑
i=0

αipi
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αj =
pHj b

pHj Apj

A simple approach to generate the A-
conjugate set is to pick n linearly inde-
pendent vectors and apply the Gram-
Schmidt process to build P .
For the error ek = xexact −xk , the CG me-
thod is monotone in the A-norm ‖y‖2A =
yHAy:

‖ek+1‖A ≤ ‖ek‖A
The CG method will solve the problem
exactly (in the absence of round-off error)
in at most n iterations since ‖ek‖A = 0 for
some k ≤ n.
The rate of convergence is affected by the
condition number κ2(A):

‖ek‖A
‖e0‖A

≤ 2
(√
κ2 − 1
√
κ2 + 1

)k
If the condition number of a matrix large,
the CG method may be too slow to con-
verge. Preconditioning with P−1 ≈ A−1:

P−1Ax = P−1b

1.6 Singular Value Decomposition
The diagonalisation of a Hermitian matrix
M ∈Cn×n:

QHMQ = Λ

The columns of Q are the normalised (in
l2 ) eigenvectors of M and Λ is a diagonal
matrix of the eigenvalues of M (which are
real). Since the eigenvectors of a Hermiti-
an matrix are orthogonal, Q is a unitary
matrix:

M = QΛQH

The singular value decomposition (SVD) of
an m×n matrix A is:

A = UΣVH

Σ ∈Rm×n is a diagonal matrix, with dia-
gonal entries σi (the singular values) sor-
ted such that σ1 ≥ σ2 ≥ . . . ≥ σp ≥ 0,
where p = min(m,n). U ∈ Cm×m and V ∈
C
n×n are unitary matrices.

The columns of V are the (normalised)
eigenvectors of AHA and the columns of

U are the (normalised) eigenvectors of
AAH . The diagonal entries of ΣHΣ are
the eigenvalues of AHA, which are the
same as the eigenvalues of AAH .

AV = UΣ

Use Avi = σiui to deduce the sign for ui
given vi (or vice versa).
The terms below row n in Σ are always
zero. Hence, the last m − n columns of
U make no contribution. In practice, the
reduced SVD, in which redundant entries
are removed, is typically used. If we ex-
pand the SVD with rankA = r:

A =
r∑
i=1

σiuiv
H
i

A low rank approximation of A is:

Ak =
k∑
i=1

σiuiv
H
i

The rank of Ak is k < r.
The SVD can construct optimal low-rank
approximations of a matrix A. It can be
shown that for all matrices B of rank k or
less:

‖A−Ak‖F =
√
σ2
k+1 + . . .+ σ2

r ≤ ‖A−B‖F
‖A−Ak‖2 = σk+1 ≤ ‖A−B‖2

If A is anm×nmatrix withm > n, we can
partition the SVD as:

A = [ U1 U2 ]
[
Σ1
0

]
VH

The least squares solution to Ax = b is:

x̂ = VΣ−1
1 UH1 b = VΣ+UHb

Σ+ is the pseudo inverse of Σ.

If x̂ = A+b (x̂ ∈Cn) then ‖x̂‖22 ≥∣∣∣uHn b
∣∣∣2 /σ2

min. If the smallest singu-
lar value σmin is small, then the least
squares solution will be large and very
sensitive to changes in b.
For a problem with zero singular values,
consider a partitioning of the SVD:

A = [ U1 U2 ]
[
Σ1 0
0 0

]
[ V1 V2 ]H

For all z ∈Cn−r we have a solution to the
least squares problem:

x̂ = V1Σ
−1
1 UH1 b+V2z

x̂ = V1Σ−1
1 UH1 b is the minimiser to the

least-squares problem with minimal l2
norm.
2 Stochastic Processes
2.1 Finite-space Markov Chains
A Stochastic Process X0,X1,X2, . . . is a
Markov chain if and only if for all times
i ≥ 1:

P (Xi+1 | X0 = j0,X1 = j1, . . . ,Xi = ji )

= P (Xi+1 | Xi = ji )

There are a set of random variables
X0,X1,X2, . . . indexed by time and each
random variable takes a value from the
state-space, S .

For an initial distribution x(0), the distri-
bution at any time n is:

x(n) = x(0)Pn

The limiting distribution is x(∞) = x(0)P∞.
Any distribution that satisfies this expres-
sion is a stationary distribution.
A Markov Chain is regular ergodic if the-
re exists a unique stationary distribution
which is the limit point for all initial dis-
tributions and which puts positive mass
on every element of the state-space S .
For an n×n transition matrix P then:

1. λ = 1 is an eigenvalue of P
2. All eigenvalues satisfy |λ| ≤ 1

Find eigenvector for λ = 1 solvingPTv =
v.
Two states of a Markov chain j and k com-
municate if, and only if, there exists inte-
gers m and n such that

Pmj,k > 0 and P nk,j > 0

A subset S̃ ⊆ S is a recurrent set if:

1. All pairs of states in S̃ communi-
cate.

2. If j ∈ S̃ and k < S̃ then P ij,k = 0 for
all i ≥ 0.

If a state belongs to a recurrent set then it
is recurrent, otherwise it is transient. If all
states in a Markov chain communicate
with each other then the Markov chain is
irreducible.
The waiting time until the next state Xd
can be found using a series of linear equa-
tions:

qj = E [ time to wait until Xd | X0 = j]

qj =
∑
k∈S

Pj,k(1 + qk)

The period of a state k of a Markov chain
is the greatest common divisor of the set{
i ≥ 0 : P ik,k > 0

}
. A state k is aperiodic if it

has period 1. A Markov chain is aperi-
odic if all states are aperiodic. If a chain
is irreducible and aperiodic then it is re-
gular ergodic and it will have a limiting
distribution.
If Xo,X1, . . . is a regular ergodic Mar-
kov chain with stationary distribution
π, then for any function f (x) as N →∞:

1
N

N∑
i=1

f (Xi )→
∑
k∈S

πkf (k)

A transition matrix P and a distribution
π are in detailed balance if:

πjPj,k = πkPk,j

π is a stationary distribution of P.
2.2 Continuous State-space Systems
Birth process: Consider when the birth ra-
te of a cell is λ per unit time, n(t) is the
number of cells at time instance t and
initially have n(0) = n0 cells:

dn(t)
dt

= λn(t)

n(t) = n0 exp(λt)

The number of births X in a time interval
∆t follows a Poisson distribution:

P (X = k) =
(λ∆t)ke−λ∆t

k!

The probability of n cells at time t is
P (N (t) = n) = Pn(t). Assuming small ∆t
and ignoring multiple events:

Pn(t +∆t) =

Pn(t)(1−nλ∆t) + Pn−1(t)((n− 1)λ∆t)

Take the limiting condition ∆t→ 0:

dPn(t)
dt

= −nλPn(t) + (n− 1)λPn−1(t)

The transition rate matrix Q is:

Q =


−λ λ 0 0 · · ·
0 −2λ 2λ 0 · · ·
0 0 −3λ 3λ · · ·
...

...
...

...
. . .


dx(t)
dt

= x(t)Q

xn(t) = Pn(t) and
∑∞
n=1 Pn(t) = 1. If the

birth process does reach a steady state:

dx(∞)
dt

= x(∞)Q = 0

This is only satisfied when xi (∞) = 0 for
all i (not a valid pmf).
Birth-death process: Introduce death rate
for a cell µ per unit time.

Pn(t +∆t) = Pn(t)(1−nλ∆t −nµ∆t)+
Pn−1(t)((n−1)λ∆t)+Pn+1(t)((n+1)µ∆t)

Random walk: The probability of direc-
tion at time k, ζk ∈ {−1,1}, is uniform
P (ζk = 1) = 1

2 . After n steps the position,
Xn is given by:

Xn =
n∑
k=1

ζk

From the central limit theorem, the distri-
bution of XN is Gaussian,N (0,N ).
Taking small step in direction ζk eve-
ry δ seconds. From above location, Wt ,
is Gaussian distributed at time instance
t =Nδ where N is very large:

N (0,Nδ) =N (0, t)

In the limit δ→ 0, this is Brownian moti-
on which models the random motion of
particles in a fluid resulting from collisi-
on. Brownian motion is also called a Wie-
ner process in stochastic processes. Let
the particle density at time t and position
x be f (x, t). Brownian motion is governed
by simple diffusion equation:

∂f (x, t)
∂t

=D
∂2f (x, t)
∂x2

Take initial condition as f (x,0) = δ(x),
the final solution is:

f (x, t) =
1

2π

∫ ∞
−∞

exp
(
−Dk2t

)
exp(ikx)dk

=
1

√
4Dπt

exp
(
− x

2

4Dt

)
=N (0,2Dt)

The properties of a one-dimensional Wie-
ner process:

1. Independence: Wt −Ws is indepen-
dent of {Wτ }τ≤s for any 0 ≤ s ≤ t.

2. Stationarity: The distribution of
Wt+s −Ws is independent of s.
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3. Gaussianity: Wt is a Gaussian
with E {Wt} = 0 and E {WtWs} =
2Dmin(t, s).

4. Continuity:Wt is a continuous
function with t.

Wiener Process with Drift:

∂p(x, t)
∂t

=m
∂p(x, t)
∂x

+D
∂2p(x, t)
∂x2

Ornstein-Uhlenbeck Process:

∂
∂t
p(x, t) =

∂
∂x

(βxp(x, t)) +
∂2

∂x2 (Bp(x, t))

2.3 Monte Carlo Markov Chains
Numerical integration using histogram ap-
proach in d-dimensions:∫

h(x)dx ≈
N∑
i=1

h
(
x(i)

)
δx1δx2 . . .δxd

Monte-Carlo Integration: Sample from a
weighting function w(x) in normalised
form:

p(x) =
w(x)∫
w(x)dx∫

h(x)dx =
∫
h(x)
p(x)

p(x)dx ≈ 1
N

N∑
i=1

h
(
x(i)

)
p
(
x(i)

)
Consider uniform distribution over volu-
me V , p(x) = 1/V :∫

h(x)dx =
V
N

N∑
i=1

h
(
x(i)

)
Importance sampling: Draw samples from
the distribution q(x):

E{f (x)} =
∫
f (x)

p(x)
q(x)

q(x)dx

≈ 1
N

N∑
i=1

f
(
x(i)

) p (x(i)
)

q
(
x(i)

)
The ratio

p
(
x(i)

)
q
(
x(i)

) is the importance of the

drawn sample. The closer that (scaled)
q(x) is to p(x) the better.
Rejection sampling: Draw samples uni-
formly from from the 2-D box, accept

those under the pdf curve and reject tho-
se above the line. Sampling in higher di-
mensions rapidly becomes highly waste-
ful (curse of dimensionality).
Metropolis-Hastings Algorithm: Current
sample is x(i), generate another sample,
x(?), from p

(
x | x(i)

)
:

x(?) = x(i) + z, z ∼N (0,I)

Accept the sample x(i+1) = x(?) with pro-

bability α = min
{
p
(
x(?)

)
p
(
x(i)

) ,1} else reject

the sample x(i+1) = x(i).
For this example the proposal distribu-
tion of z is symmetric p

(
x(i) | x(?)

)
=

p
(
x(?) | x(i)

)
. The general form of the

Metropolis-Hastings algorithm uses:

α = min

 p
(
x(?)

)
p
(
x(i) | x(?)

)
p
(
x(i)

)
p
(
x(?

)
| x(i)

) ,1
Given a limiting distribution π, generate
samples from a finite state-space Markov
chain by choosing the proposal function
to be a transition matrix R:

rj,j = 0, rj,k > 0 (j , k)

Given Xi , select X̂i+1 by sampling from
the ith row of R and accept this sample(
Xi+1 = X̂i+1

)
with probability α else re-

ject sample (Xi+1 = Xi ):

α = min

πX̂i+1
rX̂i+1,Xi

πXi rXi ,X̂i+1

,1


Initial samples often ignored (burn-in
phase) and thinning is performed by ta-
king only every nth sample.
3 Optimization
3.1 Definitions
The quantity to be minimized or maximi-
zed is called the objective function, or cost
function, or utility function, or loss func-
tion. The parameters that can be chan-
ged are called control or decision variables.
The restrictions on the allowed parame-
ter values are called constraints.
Mathematically, the optimization pro-
blem is minimize f (x) subject to:

1. Equality:

ci (x) = 0, i = 1, . . . ,m′

2. Inequality:

ci (x) ≥ 0, i =m′ + 1, . . . ,m

Inequality constraints that are restricti-
ons on the allowed values of a single con-
trol variable are called bounds.
When minimizing f (x) subject to cons-
traints, S is the feasible region and any
x ∈ S is a feasible solution. For an uncons-
trained problem, S is infinitely large.
The gradient is:

g(x) = ∇f (x) =
[
∂f

∂x1
,
∂f

∂x2
, . . . ,

∂f

∂xN

]T
The Hessian is:

H(x) = ∇(∇f (x)) = ∇2f (x)

=


∂2f
∂x2

1
· · · ∂2f

∂x1∂xN
...

. . .
...

∂2f
∂xN∂x1

· · · ∂2f
∂x2

N


At a feasible point x, a direction d is a fea-
sible direction if an arbitrary small move
from x in direction d remains feasible.
A function is convex if its graph at any
point y is never below the tangent at any
other point x:

f (y) ≥ f (x) +∇f (x)T (y − x)

A necessary condition for x∗ to be a local
minimum of f (x) in S is ∇f (x∗) ·d ≥ 0 for
all feasible directions d.
If x∗ is an interior stationary point,
∇f (x∗) = 0. Then dTH (x∗)d > 0 (the Hes-
sian is positive definite) is a sufficient con-
dition of a strong local minimum.

At a stationary point x∗,dTH (x∗)d ≥ 0
(the Hessian is positive semidefinite) is a
necessary condition of strong local mini-
mum.
If H(x) is positive definite everywhere, f
is a convex function, and therefore the
minimum is unique and a global mini-
mum.
A matrix is positive definite if and only
if all its eigenvalues are positive.
3.2 Search Methods
Iterative search methods:

1. Start with an initial guess, x0, for
the minimum of f (x).

2. Propose a search direction, dk .
3. Propose a step size αk along dk ,

typically, by an inner line search
loop to find the lowest value of
f (x) along the direction dk .

4. Update the estimate of the mini-
mum location, xk+1 = xk +αkdk .

5. Repeat until convergence.

Convergence criteria:

1. Norm of the residual
‖f (xk+1)− f (xk)‖ < εf .

2. Norm of the error ‖xk+1 − xk‖ < εx.
3. Norm of the gradient ‖∇f (xk)‖ <
εg

ε are user-defined tolerances.
The rate of convergence:

lim
k→∞

‖xk+1 − x∗‖
‖xk − x∗‖p

= β

The rate of convergence is an asymptotic
quantity. β is the convergence ratio and p
is the order of convergence.
Line search: Interval reduction until the
interval is smaller than a tolerance.
Golden section search: Impose a constant
reduction factor β ≈ 0.618 for the inter-
val length. Convergence is linear.
Newton’s method: Fit a quadratic function
by matching the function value, first and
second derivatives evaluated at a single
point x0:

f (x) ≈ g(x) = f (x0) + (x − x0)f ′ (x0)

+
1
2

(x − x0)2 f ′′ (x0)

To calculate the minimum of g(x), we set
its derivative to zero:

x = x0 −
f ′ (x0)
f ′′ (x0)

Newton’s method has a quadratic conver-
gence.
Quasi-Newton methods: The secant method
takes the current and previous points to
estimate the second derivative at the cur-
rent point:

f ′′ (x1) ≈
f ′ (x1)− f ′ (x0)

x1 − x0

The estimate for the minimum:

x = x1 − f ′ (x1)
x1 − x0

f ′ (x1)− f ′ (x0)

Convergence is superlinear, p ≈ 1.618.

3.3 Multidimensional Search
Steepest descent method: Set the search
direction as the negative gradient dk ≡
−∇f (xk). Determine by line search the
step size αk that minimizes f (x) along
dk .
Ideally, successive search directions are
orthogonal to each other dTk dk+1 = 0.
If we approximate the function with a
second-order Taylor expansion, the step
size is:

αk = −
∇f (xk)T dk
dTk H (xk)dk

Convergence is linear.
Newton-Raphson method: f (x) is approxi-
mated by a quadratic function using the
function value, gradient ∇f (x) and Hessi-
an H(x) = ∇2f (x) at the current location
xk :

f (x) ≈ q(x) = f (xk) +∇f (xk)T (x − xk)

+
1
2

(x − xk)T H (xk) (x − xk)

The minimum of q(x) occurs when
∇q(x) = 0:

x = xk − [H (xk)]−1∇f (xk)

The search direction is dk =
− [H (xk)]−1∇f (xk) and the step size
is αk = 1. Convergence is quadratic and
it converges to the minimum in one
iteration in a quadratic equation.
Conjugate Gradient method: We con-
struct the new search direction as dk =
−∇f (xk) + βkdk−1. We impose the conju-
gacy condition dTk−1Adk = 0:

βk =
dTk−1A∇f (xk)

dTk−1Adk−1
=

[
|∇f (xk)|
|∇f (xk−1)|

]2

Convergence is linear. It converges after
N iterations for an N dimensional qua-
dratic form with exact line search.
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3.4 Least Squares Fitting
The elements of the residual vector r(x)
are the errors in the model’s predictions
for each piece of data rj (x) = φj (x) − yj .
For all the pieces of data, the total error
is:

f (x) =
m∑
j=1

r2j (x) = r(x)T r(x)

The gradient of f (x) is:

∇f (x) = 2
m∑
j=1

∂rj (x)

∂xi
rj (x) i = 1,2, . . . ,m

= 2J(x)T r(x)

J(x) is the Jacobian matrix of r(x):

J(x) =


∂r1
∂x1

· · · ∂r1
∂xn

...
. . .

...
∂rm
∂x1

· · · ∂rm
∂xn


The Hessian matrix H(x) of f (x) is ex-
pressed as:

H(x) = 2J(x)T J(x) + 2
m∑
j=1

rj (x)Rj (x)

Rj (x) is the Hessian of the residual rj (x).

The Gauss-Newton method: Assume that
the residuals at the optimum rj (x∗) are
small. The Hessian H(x) can be approxi-
mated as H̃(x) = 2J(x)T J(x). The search
direction is then:

dk = −
[
H̃ (xk)

]−1
∇f (xk)

= −1
2

[
J (xk)T J (xk)

]−1
2J (xk)T r (xk)

= −J (xk)+ r (xk)

J+ =
[
J (xk)T J (xk)

]−1
J (xk)T is the pseu-

doinverse matrix. The Gauss-Newton me-
thods converges nearly quadratically.
3.5 Constrained Optimization
Linear programming (LP) is an optimiza-
tion problem in which both the objective
and constraints are linear.
The m constraints Ax = b define a sub-
space of Rn. The bounds cut out a por-
tion of this subspace which defines the

feasible region. The feasible region has a
number of corners called extremal points,
which are called basic solutions. n −m
control variables are zero at these points
and are called free variables.
The simplex algorithm:

1. Start with an extremal feasible so-
lution, which is a vertex of the fea-
sible region with m nonzero con-
trol variables.

2. Move along an edge of the feasible
region to another vertex where f
is smaller and continue until you
find a vertex where every edge lea-
ding away would increase f .

3.6 Nonlinear Constrained Optimizati-
on

Minimise a non linear function f (x) sub-
ject to m equality constraints hi (x) = 0
and n inequality constraints gj (x). The
set of equality and inequality constraints
defines the feasible region.
At a location x, constraints are active if
they do not allow x to infinitesimally
change in at least one direction. Otherwi-
se constraints are inactive.
At a minimum, the gradient of the functi-
on is parallel to the gradient of the cons-
traint:

∇f (x∗) = −λ∇h (x∗)

The optimality condition can be recover-
ed by defining an unconstrained minimi-
sation problem with a new cost function:

L (x,λi ) = f (x) +
m∑
i=1

λihi (x)

L is the Lagrangian and λi are the Lagran-
ge multipliers, which are scalars.
If x∗ is a stationary point of the Lagran-
gian then ∇L (x∗,λ) = 0:

∇f (x∗) + [∇h (x∗)]T λ = 0

hi (x
∗) = 0 i = 1,2, . . . ,m

A sufficient condition for a stationary
point x∗ to be a minimum is provided
by the Hessian: dT ∇2L (x∗)d > 0 for d ∈
space tangent to all constraints. Hence,
∇2L is positive definite in the tangent
space.
For inequality constraints, we define the
Lagrangian:

L
(
x,µj

)
= f (x) +

n∑
j=1

µjgj (x)

If x∗ is stationary point of L(x), then
∇L

(
x∗,µj

)
= 0:

∇f (x∗) + [∇g (x∗)]T µ = 0

µjgj (x) = 0

µj ≥ 0, j = 1,2, . . . ,n

These conditions are called Karush-Kuhn-
Tucker (KKT) conditions and µj are the
KKT multipliers.
In the general case with both equality
and inequality constraints:

L(x,λ,µ) = f (x) +
m∑
i=1

λihi (x) +
n∑
j=1

µjgj (x)

Sensitivity:

δf (x∗) = −δh (x∗)T λ− δg (x∗)T µ

−λi and −µj are the sensitivities of f to
an infinitesimal change in the constraint
hi and gj , respectively.

Penalty functions: We can replace the
constrained optimization problem with
an approximated unconstrained optimi-
zation problem:

q(x,κ) = f (x) +κ
m∑
i=1

h(x)2

κ is the user defined penalty parameter.
For inequality constraints, g(x) ≤ 0, we
can use an asymmetric penalty funtion
such as κmax[0, g(x)]2.
Battier functions:

1. Inverse barrier function:

q(x,κ) = f (x)− 1
κ

m∑
j

1
gj (x)

2. Logarithmic barrier function:

q(x,κ) = f (x)− 1
κ

m∑
j

ln
[
−gj (x)

]

For both, the larger κ, the sharper the di-
vergence of the singularity near the cons-
traint boundary.

3.7 Global Optimization
We want to sample the function f (x) wi-
thin an average range T in a way that we
maximise the average information on the
distribution of values of f (x). Our goal is
to minimize f (x) which is called energy
f (x) = E(x).
The Boltzmann distribution is the maxi-
mum entropy distribution:

Pr(E(x)) ∝ exp
(
−E(x)
T

)
Simulated annealing: Change the configu-
ration x using a proposed distribution U
which is a uniform distribution centred
at x = 0 and h is the width/shift:

xn+1
?← xn +U

(
−1

2
,
1
2

)
h

Follow the Metropolis-Hastings rule for
accepting or rejecting the proposal:

Pr
(
acceptx→ x′

)
= min

 e−E(x′)/T

e−E(x)/T
,1


= min

(
e−∆E/T ,1

)
∆E = E (x′) − E(x) is the energy change
of the proposal. Annealing corresponds
to lowering the temperature slowly as
the simulation of the stochastic process
proceeds.

Tn+1← Tn × (1− rate )

(The End)


