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1 LinearAlgebra
1.1 Definitions

A wvector space, often denoted by V, is a
‘family’ of vectors that obey some basic
rules. A vector v is an element of a vec-
tor space. A vector space must always
contain a zero vector.

A subspace of a vector space is a subset
that obeys the rules of a vector space.

A matrix A is a linear operator that per-
forms a linear transformation from one
vector to another:

Ax=Db

The matrix A maps the vector x € C" to
the vector b e C":

A:C">C"

An m x n matrix comes from the space
C"™" and we will often write A € C"™*",
The conjugate transpose of a matrix:

AH =AT =3"
A matrix M € C"™" is Hermitian if MH =
M.
The dot (or scalar) product is an opera-

tion between two equal-length vectors
that yields a scalar.

n [N
xfy =Y %y =yHx
i

The dot product is sometimes called the
inner product (-,-).

For an nxn matrix A, (1, x) is an eigenpair
of Aif Ax = Ax, where 1 an eigenvalue of
A, and x is the corresponding eigenvector
of A.

The eigenvalues of a Hermitian matrix

are real and the eigenvectors of a Hermi-

H

tian matrix are orthogonal, i.e. u; u; =

u?ui:OWheniij.

A matrix Q € C"™" is a unitary matrix

if Q" =Q71,ie.Q"Q=0QQ" =1.1f Q
was real, we would call it an orthogonal
matrix.

A Hermitian matrix M € C"*" is positive
definite if:

xIMx>0 V¥YxeC™0

The eigenvalues of a Hermitian positive
definite matrix are strictly positive (this
is a sufficient condition).

A Hermitian matrix M € C™" is semi-
positive definite if:

HMx>0 VxeC"

The matrix AMA is positive semi-
definite.

The rank of a matrix A € C"™*" is the
number of linearly independent rows or
columns (the number is equal). It satis-
fies rank A < min(m, n). A matrix is full
rank if rank A = min(m, n) and rank defi-
cient if rank A < min(m, n).

A matrix in which most entries are zero
is a sparse matrix.

Vector norms: A particular family of
norms are known as /, -norms:

n 1/
Il = [Zw]
i=1

The I, norm [|x||o, = max; |x;|.
We can define norms that involve a ma-
trix A,:

I3 = (x,Ax) = x Ax
A must be positive definite. The above
norm is often called the energy norm.

Operator norms: A norm of a matrix A is
defined as:

B llAX]|
[[A]| = max
xeC"\o [Ix]|

This norm measures the maximum
amount by which the matrix A can re-
scale a vector x.

llAx|| < [Allllx]]  Vx
For ||A||2(2 -norm ):
HAH
A Ax
A2 = max =2 Xy (AFA
1A = max i = Amax(A"A)

Amax (AHA) is the largest eigenvalue of
AHA. The norm [|All, is therefore the
square root of the largest eigenvalue of
AH A (the largest singular value of A). If
A is Hermitian ||A||> = |Almax(A).
Frobenius norm:

IAllF = W

The Frobenius norm is also invariant un-
der rotation, ||QA||r = ||A||[r where Q is a
unitary matrix.

The condition number of a matrix A is:
(A)=llAl]a7!

For the 2-norm, since the eigenvalues of

A1 are the reciprocal of the eigenvalues
of A:

If A is Hermitian,

(A

A)= ———=
2= A min
1.2 Stability

Consider the problem A(x + 0x) = b+ 0b
where 0b is the error in the RHS and ox
is the consequent error in the solution.

< ala=1| ||”0]:3”||

lloxl|
Tl =

For large condition numbers we can ex-
pect small errors in b to cause large er-
rors in x. A matrix with a large condition
number is said to be ill-conditioned.

1.3 Interpolation

Interpolation is fitting a function to a
data set that passes through the data
points. If we have n data points f =

[fi(x1),eees fu(xp ] in a one dimensio-
nal space, we can usually fit a polynomial
with n coefficients of the form:

f(x)=co+c1Pp(x)+

We can solve the matrix equation Ac = f:

IObII
IIbII

st cepo1Pr(x)

1 Pi(xq) Py1(x1) o
i Py (‘xl) Pn—l‘(xn) Cn'—l
=[fi (1) oo fir (e)]T

The matrix A is known as the Vander-
monde matrix. It is a notoriously ill-
conditioned matrix, and the conditi-
on number grows with increasing po-
lynomial degree using monomial base
1,x,x2,...,x"1,

The Legendre polynomials on the interval
[-1,1]:

(n+1)Pyy1(x) = (214 1)xPy (x) = nPy_1(x)
Pp=1and Py =x

The special feature of Legendre polyno-
mial is that:

ifm=n

1
j Po(x)Py(x)/dx = 0
-1

Legendre polynomials of different degree
are orthogonal to each other. The Legend-
re Vandermonde matrix is considerably
better conditioned.

Polynomial interpolation can lead to os-
cillations towards the end of the inter-
val known as the Runge effect. We can
mitigate the Runge effect by using non-
equispaced sampling points, and parti-
cularly good points are the roots of some
orthogonal polynomials.

1.4 Data Fitting

To find a solution to the problem Ax = b,
the vector b must lie in the column space
of A. If A is an m x n matrix and m > n (a

skinny matrix), we have more equations
than unknowns and in general there will
be no solution.

For some vector £, we can define a resi-
dual vector r:
r=Ax-b

Find % that minimises the residual r in
the chosen norm:

min [|r(%)|| = min ||AX — b
XeCn xeC"

If we use the /p-norm for the problem,
we seek mingccn [|AX - b||5.

%= (AHA)A AHb = A'D

-1
The matrix A* = (AHA) AH is known
as the pseudoinverse or the Moore-Penrose

. . -1
inverse. The inverse (AHA) can be com-

puted when A is full rank.
1.5 Iterative Methods for Linear Sys-
tems

Power iteration: An iterative method for
finding the eigenvector associated with
the largest absolute eigenvalue of a ma-
trix. Since a vector x € C" can be expres-
sed in terms of the n eigenvectors of an
nxnmatrixx =} I | a;u;, if we multiply
x repeatedly by A

n

AFx = Za,-/\i.(ui

i=1

If the largest eigenvalue is distinct the
resulting vector will be aligned with

the eigenvector of the largest eigenva-
lue. To find an estimate of the corre-
sponding eigenvalue 1\*, we could pose
a minimisation problem in the /;-norm

min jx¢c HAx - /\*XHZ. This is minimised
when:
xH Ax

XHX

A =R(A,x) =

R is known as the Rayleigh quotient.

A family of stationary methods for finding
approximate solutions to Ax = b involves
decomposing the matrix operator such
that A = N -P and computing an appro-
ximate solution xj,1:

Nxj,1 =b+Pxg

The process is then repeated to hopeful-
ly converge to the exact solution. Classic
examples of splitting A include:

1. Richardson iteration: N = 1.
2. Jacobi method: N = diag(A).

3. Gauss-Seidel: N = L(A) is the lower
triangular part of A (including the
diagonal).

Defining the error at the kth iteration
€k = Xexact — Xk:

= (N_IP)k ey

The method will converge only if the ab-
solute value of every eigenvalue is less
than one. The largest absolute eigenva-
lue of a matrix A is often denoted by
p(A) and is known as the spectral radius.
The stationary methods based on split-
ting will converge if:

p(N"'P)<1

The conjugate gradient (CG) method is

a Krylov subspace method. Consider that

we have a set of n non-zero vectors P =

{Po,P1,.--,Pn—1) that are A-conjugate:
P; Ap]:O ifi=j

Using P as a basis for the solution of

Ax = b, where A is a n x n Hermitian
positive-definite matrix:

n—1

X = thipi

i=0
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H
ij

aj =
]
pl Ap;

A simple approach to generate the A-
conjugate set is to pick n linearly inde-
pendent vectors and apply the Gram-
Schmidt process to build P.
For the error e} = Xexact — Xk, the CG me-
thod is monotone in the A-norm ||y||3‘ =
y" Ay

llex+1lla < llexlla
The CG method will solve the problem
exactly (in the absence of round-off error)
in at most # iterations since ||ex||4 = 0 for
some k <.
The rate of convergence is affected by the
condition number x5 (A):

k

il o V-l )
lleolla = \Vx2+1

If the condition number of a matrix large,

the CG method may be too slow to con-

verge. Preconditioning with P~1 ~ A~1:

P lax=P b

1.6 Singular Value Decomposition

The diagonalisation of a Hermitian matrix
M e C™:

ofiMQ=A

The columns of Q are the normalised (in
I ) eigenvectors of M and A is a diagonal
matrix of the eigenvalues of M (which are
real). Since the eigenvectors of a Hermiti-
an matrix are orthogonal, Q is a unitary
matrix:

M=QAQ"

The singular value decomposition (SVD) of
an m X n matrix A is:

A =UrvH

¥ € R™" is a diagonal matrix, with dia-

gonal entries o; (the singular values) sor-
ted such that o 203 2 ... 2 0p 2 0,

where p = min(m,n). Ue C"™" and V €
C™" are unitary matrices.

The columns of V are the (normalised)
eigenvectors of A A and the columns of

U are the (normalised) eigenvectors of
AA'. The diagonal entries of T/¥ are
the eigenvalues of AH A, which are the
same as the eigenvalues of AAF.

AV =UX

Use Av; = oju; to deduce the sign for u;
given v; (or vice versa).

The terms below row n in ¥ are always
zero. Hence, the last m — n columns of
U make no contribution. In practice, the
reduced SVD, in which redundant entries
are removed, is ty}‘(]aically used. If we ex-
pand the SVD with rank A = r:

;

— wvi

A= Zalu,vi
i=1

A low rank approximation of A is:

k
Ay = Zdiuile
i=1

The rank of A is k <r.

The SVD can construct optimal low-rank
aﬁ)proximations of a matrix A. It can be
shown that for all matrices B of rank k or
less:

IA = Agllp = \JoF,; +... + 07 <|IA-B|F
1A~ Agllo = oks1 < A~ Bll2

If A is an m x n matrix with m > n, we can
partition the SVD as:

_ L1 |yH

A=[ U] U, ][ - ]V
The least squares solution to Ax = b is:

x=vrlullb =vztullp
T* is the pseudo inverse of X.
If x = A*b(kxeC") then [} >
|ung|2/c7§ﬁn. If the smallest singu-
lar value opin is small, then the least

squares solution will be large and very
sensitive to changes in b.

For a problem with zero singular values,
consider a partitioning of the SVD:

A=[ U Uz][zol 8][V1 vy A

For all z € C"~" we have a solution to the
least squares problem:

=V E'UHb+ V)2

X = V12I1U111b is the minimiser to the
least-squares problem with minimal I,
norm.

2 Stochastic Processes

2.1 Finite-space Markov Chains

A Stochastic Process X, X1,X>,... is a

Markov chain if and only if for all times
i>1:

P(Xiz1 1 Xo =jo, X1 =j1,--, Xi = i)
=P (Xjq1 1 Xi =ji)

There are a set of random variables
X0, X1,X3,... indexed by time and each
random variable takes a value from the
state-space, S.

For an initial distribution x(o), the distri-
bution at any time # is:

K1) — 5 (O)pr

The limiting distribution is x(*) = x(0)p>
Any distribution that satisfies this expres-
sion is a stationary distribution.

A Markov Chain is regular ergodic if the-
re exists a unique stationary distribution
which is the limit point for all initial dis-
tributions and which puts positive mass
on every element of the state-space S.
For an n x n transition matrix P then:

1. A =1is an eigenvalue of P
2. All eigenvalues satisfy || <1

Find eigenvector for A = 1 solvingPTv =
V.

Two states of a Markov chain j and k com-
municate if, and only if, there exists inte-
gers m and n such that

m n
Pj,k >0 and Pk,j >0

A subset S C S is a recurrent set if:

1. All pairs of states in S communi-
cate.

2. IfjegandkzgthenPjik:Ofor
alli > 0.

If a state belongs to a recurrent set then it
is recurrent, otherwise it is transient. If all
states in a Markov chain communicate
with each other then the Markov chain is
irreducible.

The waiting time until the next state X,
can be found using a series of linear equa-
tions:

qj = £[ time to wait until Xy [ Xo = j]

qj = ij,k(l"'qk)

keS

The period of a state k of a Markov chain
is the greatest common divisor of the set
{i >0:P, > 0}. A state k is aperiodic if it
has period 1. A Markov chain is aperi-
odic if all states are aperiodic. If a chain
is irreducible and aperiodic then it is re-
gular ergodic and it will have a limiting
distribution.

If Xo,X1,... is a regular ergodic Mar-
kov chain with stationary distribution
7, then for any function f(x) as N — oo:

N
WL IR
i=1

keS

A transition matrix P and a distribution
7t are in detailed balance if:

7Py = 7P, j

7 is a stationary distribution of P.

2.2 Continuous State-space Systems
Birth process: Consider when the birth ra-
te of a cell is A per unit time, n(t) is the

number of cells at time instance t and
initially have n(0) = ng cells:

dn(t)
dt
n(t) = ngexp(At)

= An(t)

The number of births X in a time interval
At follows a Poisson distribution:

AAE k —AAt

P(X =k) = ()kif

The probability of n cells at time ¢ is
P(N(t) = n) = P,(t). Assuming small At
and ignoring multiple events:

P,y(t+At) =

Py()(1 = nAAt) + Py 1 (£)((n = 1)AAE)

Take the limiting condition At — 0:

dPy(t)

T —nAP,(t)+ (n—1)AP,_1(t)

The transition rate matrix Q is:

-1 A 0 0

0 =21 2 0
Q= 0o 0o =31 32
dx(t)
" =x(Q

xu(t) = Py(t) and } 77, P, (t) = 1. If the
birth process does reach a steady state:
dx(co)
dt

= x(c0)Q =0

This is only satisfied when x;(c0) = 0 for
all i (not a valid pmf).

Birth-death process: Introduce death rate
for a cell y per unit time.

P, (t+At) = P (t)(1 — nAAt — nulAt)+
Py—1 ()((n=1)AAL)+ By (£)((n+1)pAt)

Random walk: The probability of direc-
tion at time k, {; € {-1,1}, is uniform
P(Cr=1)= % After n steps the position,
X, is given by:

n
Xy = ZCk
k=1

From the central limit theorem, the distri-
bution of Xy is Gaussian, NV (0,N).
Taking small step in direction (i eve-
ry o seconds. From above location, W;,
is Gaussian distributed at time instance
t = No where N is very large:

N(0,N6) = N(0,¢)

In the limit 6 — 0, this is Brownian moti-
on which models the random motion of
particles in a fluid resulting from collisi-
on. Brownian motion is also called a Wie-
ner process in stochastic processes. Let
the particle density at time t and position
x be f(x,t). Brownian motion is governed
by simple diffusion equation:

If (xt) _
at

% f(x1)
dx?

Take initial condition as f(x,0) = o(x),
the final solution is:

1 [Se]
flxt)= = J:OO exp(—Dkzt)exp(ikx)dk

1 x?
—_— -—— | =N(0,2Dt
\/4Dntexp( 4Dt) ( )
The properties of a one-dimensional Wie-

ner process:

1. Independence: Wy — W; is indepen-
dent of (Wi}, forany 0 <s<t.

2. Stationarity: The distribution of
Wi s — Ws 1s independent of s.
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3. Gaussianity: W; is a Gaussian
with £{W;} = 0 and (W, W} =
2D min(t,s).

4. Continuity:W; is a continuous
function with t.

Wiener Process with Drift:

sz(x, t)
Ix?

ap(x,t)

_,0put)

ot o P

Ornstein-Uhlenbeck Process:
d J 02
ap(x,t) = g(/ﬁ’xp(x,t)) + ﬁ(Bp(x,t))

2.3 Monte Carlo Markov Chains

Numerical integration using histogram ap-
proach in d-dimensions:

N
Jh(x)dx ~ Zh(x(i))ém 0x7...0X4
i=1

Monte-Carlo Integration: Sample from a

weighting function w(x) in normalised
form:

p(x) =
J

w(x)dx

(i)
jh(x)dx = f @p(x)dxz e i h(x - )

P(X) N P p(x(l))

Consider uniform distribution over volu-
me V, p(x) =1/V:

Ve
Jh(x)dx =N ;h(x(l))

Importance sampling: Draw samples from
the distribution g(x):

X)

ELF () = jf(x)’;f—wxmx
1 .

X)

f(x(])) p(x(lj))

1=
-~
S

i

p(x(i))
a(x?)
drawn sample. The closer that (scaled)
q(x) is to p(x) the better.

Rejection sampling: Draw samples uni-
formly from from the 2-D box, accept

The ratio

is the importance of the

those under the pdf curve and reject tho-
se above the line. Sampling in higher di-
mensions rapidly becomes highly waste-
ful (curse of dimensionality).

Metropolis-Hastings Algorithm: Current
sample is x(1), generate another sample,
x™), from p(x | x(i)):

X = xli) 4,

z~ N(0,1)
Accept the sample x(+1) = x09) with pro-

(*)
bability a = min plx - )
p(x?)

the sample x(/*1) = x(1),
For this example the proposal distribu-
tion of z is symmetric p(x(i) |x(*)) =

,1} else reject

p(x(*) |x(i)). The general form of the
Metropolis-Hastings algorithm uses:

p(x(*))p(x(i) |x(*))
a =min A —, 1
p(x(’))p(x(*) | x(l))
Given a limiting distribution 7, generate
samples from a finite state-space Markov

chain by choosing the proposal function
to be a transition matrix R:

(j#k)

r7,i =01k >0

Given X;, select X;,1 by sampling from
the i row of R and accept this sample

(Xi+1 =Xin ) with probability a else re-
ject sample (X1 = X;):

a:min{

Initial samples often ignored (burn-in
phase) and thinning is performed by ta-

o  To
Xiv1 Xir1,Xi 1
TEXiTX;, X1

king only every n'" sample.

3 Optimization

3.1 Definitions

The quantity to be minimized or maximi-
zed is called the objective function, or cost
function, or utility function, or loss func-
tion. The parameters that can be chan-
ged are called control or decision variables.
The restrictions on the allowed parame-
ter values are called constraints.
Mathematically, the optimization pro-
blem is minimize f(x) subject to:

1. Equality:

ci(x)=0, i=1,..,m

2. Inequality:

ci(x)>0, i=m'+1,...,m

Inequality constraints that are restricti-
ons on the allowed values of a single con-
trol variable are called bounds.

When minimizing f(x) subject to cons-
traints, S is the feasible region and any
x € S is a feasible solution. For an uncons-
trained problem, S is infinitely large.
The gradient is:

o)

Jd Jd
e =V =|2L 2L

B axl ! axz""' aXN
The Hessian is:

H(x) = V(Vf(x)) = V£ (x)

2’f Pf

Ix? dx1 dxy

I’f 2f
dxy dxy QXIZ\]

At a feasible point x, a direction d is a fea-
sible direction if an arbitrary small move
from x in direction d remains feasible.
A function is convex if its graph at any
point v is never below the tangent at any
other point x:

f@) = f0)+VF) T (p-x)

A necessary condition for x* to be a local
minimum of f(x)in S is Vf (x*)-d > 0 for
all feasible directions d.

If x* is an interior stationary point,
Vf (x*)=0.Then dTH (x*)d > 0 (the Hes-
sian is positive definite) is a sufficient con-
dition of a strong local minimum.

At a stationary point x*,d T H (x*)d > 0
(the Hessian is positive semide{’inite) isa
necessary condition of strong local mini-
mum.

If H(x) is positive definite everywhere, f
is a convex function, and therefore the
minimum is unique and a global mini-
mum.

A matrix is positive definite if and only
if all its eigenvalues are positive.

3.2 Search Methods

Iterative search methods:

1. Start with an initial guess, xq, for
the minimum of f(x).

2. Propose a search direction, dj.

3. Propose a step size ay along dy,
typically, by an inner line search
loop to find the lowest value of
f(x) along the direction dj.

4. Update the estimate of the mini-
mum location, xj;1 = Xk + agdg.

5. Repeat until convergence.
Convergence criteria:

1. Norm of the
If (xks1) = f (xp)ll < e

2. Norm of the error ||[xj,1 — x|l < €x.-
3. Norm of the gradient ||[Vf (x;)]| <
tg
¢ are user-defined tolerances.
The rate of convergence:

residual

i I =l _
koo [l —x°[P

The rate of convergence is an asymptotic
quantity. f8 is the convergence ratio and p
is the order of convergence.

Line search: Interval reduction until the
interval is smaller than a tolerance.
Golden section search: Impose a constant
reduction factor g ~ 0.618 for the inter-
val length. Convergence is linear.
Newton’s method: Fit a quadratic function
by matching the function value, first and
second derivatives evaluated at a single
point xq:

fx) = g(x) = f (x0) + (x—x0) f (x0)
1
+ 5 (e=x0) f” (x9)
To calculate the minimum of g(x), we set
its derivative to zero:

Newton’s method has a quadratic conver-
gence.

Quasi-Newton methods: The secant method
takes the current and previous points to
estimate the second derivative at the cur-
rent point:

f(x1) = f' (x0)

X1 —X0

7 (x1) =

The estimate for the minimum:
x=x1—f(x __X-X
L) TR )

Convergence is superlinear, p ~ 1.618.

3.3 Multidimensional Search

Steepest descent method: Set the search
direction as the negative gradient dj =
—Vf (xx). Determine by line search the
step size aj that minimizes f(x) along
dp.

Ideally, successive search directions are
orthogonal to each other ddek+1 = 0.
If we approximate the function with a

second-order Taylor expansion, the step
size is:

_ Vf() dy
Al H (xi) dy

Convergence is linear.

Newton-Raphson method: f(x) is approxi-
mated by a quadratic function using the
function value, gradient Vf(x) and Hessi-
an H(x) = sz(x) at the current location
Xk

flx)~q(x) = f (x) + Vf (i) T (x—xp)
+ 3 ()T H () (e xp)

The minimum of g(x) occurs when
Vq(x)=0:

x = xp = [H (x)] ™ Vf (x0)

The search direction is dp =
—[H (x¢)] Vf(xx) and the step size
is ay = 1. Convergence is quadratic and
it converges to the minimum in one
iteration in a quadratic equation.
Conjugate Gradient method: We con-
struct the new search direction as dj =
—Vf (xr)+ Bxdx—_1.- We impose the conju-
gacy condition dkT_lAdk =0:

dl AV (xg) _[
dl | Adgy

IVF (xp)] r
VF (1)l

Convergence is linear. It converges after
N iterations for an N dimensional qua-
dratic form with exact line search.
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3.4 Least Squares Fitting

The elements of the residual vector r(x)
are the errors in the model’s predictions
for each piece of data rj(x) = ¢;(x) -
For all the pieces of data, the total error
is:

n
0)=) r®)=rxTrx
j=1
The gradient of f(x) is:
M Jri(x)
_ J . i
Vf(x)= 22{ o r](x) i=1,2,...,m
]:
=2](x)"r(x)
J(x) is the Jacobian matrix of r(x):
871 871
Ixy Ix,
J(x) =
I I
Jx; 9%,
The Hessian matrix H(x) of f(x) is ex-
pressed as:
m
H(x)=2](x)TJ(x)+2 ) rj(x)R;(x)
j=1

Rj(x) is the Hessian of the residual r;(x).
The Gauss-Newton method: Assume that
the residuals at the optimum r; (x*) are
small. The Hessian H(x) can be approxi-

mated as H(x) = 2J(x)TJ(x). The search
direction is then:

di =~ [A ()] VS ()

—%[](xk)T](xk”7]Zf(xk)Tr(xk)

=—J (xx) " 7 (xp)

-1 .
7* = [T T ea)] T ()T s the pseu-
doinverse matrix. The Gauss-Newton me-
thods converges nearly quadratically.

3.5 Constrained Optimization

Linear programming (LP) is an optimiza-
tion problem in which both the objective
and constraints are linear.

The m constraints Ax = b define a sub-

space of R". The bounds cut out a por-
tion of this subspace which defines the

feasible region. The feasible region has a
number of corners called extremal points,
which are called basic solutions. n —m
control variables are zero at these points
and are called free variables.

The simplex algorithm:

1. Start with an extremal feasible so-
lution, which is a vertex of the fea-
sible region with m nonzero con-
trol variables.

2. Move along an edge of the feasible
region to another vertex where f
is smaller and continue until you
find a vertex where every edge lea-
ding away would increase f.

3.6 Nonlinear Constrained Optimizati-
on

Minimise a non linear function f(x) sub-
ject to m equality constraints h;(x) = 0
and n inequality constraints gj(x). The
set of equality and inequality constraints
defines the feasible region.

At a location x, constraints are active if
they do not allow x to infinitesimally
change in at least one direction. Otherwi-
se constraints are inactive.

At a minimum, the gradient of the functi-
on is parallel to the gradient of the cons-
traint:

Vf(x")==-AVh(x")

The optimality condition can be recover-
ed by defining an unconstrained minimi-
sation problem with a new cost function:

L(x,A) = f(x)+ ) Aihi(x)
i=1

L is the Lagrangian and A; are the Lagran-
ge multipliers, which are scalars.

If x* is a stationary point of the Lagran-
gian then VL (x*, 1) =

Vf(x*)+[Vh(x ] A=0
hi(x*):O i=1,2,...,m

A sufficient condition for a stationary
point x* to be a minimum is provided
by the Hessian: d” V2L (x*)d > 0 for d €
space tangent to all constraints. Hence,
V2L is positive definite in the tangent
space.

For inequality constraints, we define the
Lagrangian:

ZI‘J gjx

(x F‘J

If x* is stationary point of L(x), then
VL(x*,pj) =0

Vf(x*)+ [Vg(x*)]T,u =0
#jgj(x)=0
Hiz0, j=12..,n

These conditions are called Karush-Kuhn-
Tucker (KKT) conditions and y; are the

KKT multipliers.

In the general case with both equality
and inequality constraints:

L(x, A p) = Z/\ ihi( Z,u]g]
Sensitivity:
5f (x*) = =5h(x")T A= 5g(x")T p

—A; and —p; are the sensitivities of f to
an infinitesimal change in the constraint
hi and gj, respectively.

Penalty functions: We can replace the
constrained optimization problem with

an approximated unconstrained optimi-
zation problem:

« is the user defined penalty parameter.
For inequality constraints, g(x) < 0, we
can use an asymmetric penalty funtion
such as k max[0, g(x)]%.

Battier functions:
1. Inverse barrier function:

m

1
(x, %) = f(x) - —
1 f K ;gj(x)

2. Logarithmic barrier function:

m

—7Zm[ gj(x

q(x, %)

For both, the larger x, the sharper the di-
vergence of the singularity near the cons-
traint boundary.

3.7 Global Optimization

We want to sample the function f(x) wi-
thin an average range T in a way that we
maximise the average information on the
distribution of values of f(x). Our goal is
to minimize f(x) which is called energy
f(x)=E(x).

The Boltzmann distribution is the maxi-
mum entropy distribution:

E(x)

Pr(E(x)) oc exp (—T)

Simulated annealing: Change the configu-
ration x using a proposed distribution U
which is a uniform distribution centred
at x = 0 and h is the width/shift:

1)h

?
+U(
Xn+l < Xn 2'3

Follow the Metropolis-Hastings rule for
accepting or rejecting the proposal:
e E)/T '
o EQ)/T’
( ¢ AE/T, 1)

Pr(acceptx — x') = min[
=min

AE = E(x’) — E(x) is the energy change
of the proposal. Annealing corresponds
to lowering the temperature slowly as
the simulation of the stochastic process

proceeds.

Tyi1 < T, x(1— rate)

(The End)



