
3F7 Information Theory & Coding
by Ziyi Z., Page 1 in 4

1 Probability and Entropy
1.1 Entropy
The entropy of a discrete random variable
X with pmf P is:

H(X) =
∑
x

P (x) log
1
P (x)

H(X) can be written as E

[
log 1

P (X)

]
and

has unit bits. H(X) is the uncertainty as-
sociated with the rv X.
X is called a Bernoulli(p) random varia-
ble if takes value 1 with probability p
and 0 with probability 1− p.
Binary Entropy Function:

H2(p) = p log
1
p

+ (1− p) log
1

1− p

Let X be discrete random variable taking
values in X . Denote the alphabet size |X |
by M. Then we have the following pro-
perties of entropy:

1. H(X) ≥ 0

2. H(X) ≤ logM

3. Among all random variables ta-
king values in X , the equipro-
bable distribution

(
1
M , . . . ,

1
M

)
has

the maximum entropy, equal to
logM.

1.2 Joint and Conditional Entropy
The joint entropy of discrete rvs X,Y with
joint pmf PXY is:

H(X,Y) =
∑
x,y

PXY (x,y) log
1

PXY (x,y)

The conditional entropy of Y given X is:

H(Y |X) =
∑
x

PX (x)H(Y |X = x)

=
∑
x,y

PXY (x,y) log
1

PY |X (y|x)

Using product and sum rule of probabi-
lity:

H(X,Y) =H(X) +H(Y |X)

=H(Y) +H(X |Y)

Chain Rule of Joint Entropy: The joint
entropy can be decomposed as:

H(X1, . . . ,Xn) =
n∑
i=1

H(Xi |Xi−1, . . . ,X1)

If X1, . . . ,Xn are independent random va-
riables, then:

H(X1, . . . ,Xn) =
n∑
i=1

H(Xi)

1.3 Relative Entropy
The relative entropy or the Kullback-
Leibler (KL) divergence between two
pmfs P and Q is:

D(P ‖Q) =
∑
x∈X

P (x) log
P (x)
Q(x)

Relative entropy is a measure of distance
between distributions P and Q. However,
it is not a true distance:

D(P ‖Q) ,D(Q‖P)

Relative Entropy is always non-negative:
D(P ‖Q) ≥ 0 with equality if and only if
P =Q.
1.4 Hypothesis Testing
Suppose we have data X1, . . . ,Xn, and the
knowledge that one of the following is
true.

H0 : X1, . . . ,Xn ∼ i.i.d. P
H1 : X1, . . . ,Xn ∼ i.i.d. Q

H0 is often called the null hypothesis.
Type I error: This occurs when H0 is true,
but the decision rule chooses H1.
Type II error: This occurs whenH1 is true,
but the decision rule chooses H0.
The likelihood ratio (LR) is defined as:

LR (X1, . . . ,Xn) =
Q (X1, . . . ,Xn)
P (X1, . . . ,Xn)

The normalized log-likelihood ratio (LLR)
is:

LLR (X1, . . . ,Xn) =
1
n

log
Q (X1, . . . ,Xn)
P (X1, . . . ,Xn)

For the problem of testing between dis-
tributions P and Q, the optimal decision
rule is a likelihood-ratio thresholding ru-
le. For some threshold T :

Choose H1 if Q(X1,...,Xn)
P (X1,...,Xn) ≥ T ; otherwise

choose H0.
Equivalently, the optimal rule can be ex-
pressed using LLR:

Choose H1 if 1
n log Q(X1,...,Xn)

P (X1,...,Xn) ≥ t; other-

wise choose H0.
Under H1, where Xi ∼ i.i.d. Q, therefo-
re LLR (X1, . . . ,Xn)→D(Q‖P). Under H0,
where Xi ∼ i.i.d. P , LLR (X1, . . . ,Xn) →
−D(P ‖Q).
1.5 Mutual Information
Consider two random variables X and Y
with joint pmf PXY . The mutual infor-
mation between X and Y is defined as:

I(X;Y) =H(X)−H(X | Y)

Mutual information is the reduction in
the uncertainty of X when you observe
Y .

I(X;Y) =H(X) +H(Y)−H(X,Y)

=H(Y)−H(Y | X)

Venn Diagram

H(X) H(Y)

I(X;Y)

The two circles together represent
H(X,Y).
Mutual information is the relative entro-
py between the joint pmf and the product
of the marginals:

I(X;Y) =D (PXY ‖PXPY)

I(X;Y) ≥ 0 because D(P ‖Q) ≥ 0 for
any pair of pmfs P ,Q. Hence, H(X |
Y) ≤ H(X) and H(Y | X) ≤ H(Y). Given
X,Y ,Z jointly distributed according to
PXYZ , the conditional mutual informati-
on I(X;Y |Z) is defined as:

I(X;Y | Z) =H(X | Z)−H(X | Y ,Z)

Chain Rule of Mutual Information:

I (X1,X2, . . . ,Xn;Y) =
n∑
i=1

I (Xi ;Y | Xi−1,Xi−2, . . . ,X1)

2 Data Compression
2.1 Estimating Tail Probabilities
Markov and Chebyshev inequalities are
ways to bound tail probabilities with li-
mited information about the random va-
riable.
Markov’s Inequality: For a non-negative
rx X and any a > 0,

P (X ≥ a) ≤ E[X]
a

Often, we bound the tail probabilities of
deviations around the mean of an rv.
Chebyshev’s inequality: For any rv X and
a > 0,

P (|X −EX | ≥ a) ≤ Var(X)
a2

2.2 Weak Law of Large Numbers
Weak Law of Large Numbers (WLLN)
states that empirical average converges
to the mean. Let X1,X2, · · · be a sequence
of i.i.d. random variables with finite
mean µ. Let Sn = 1

n
∑n
i=1Xi .

Formal statement of WLLN: For any ε > 0,

lim
n→∞

P (|Sn −µ| ≥ ε) = 0

.
2.3 Typicality
If X1, · · · ,Xn are chosen ∼ i.i.d.
Bernoulli(p), then for large n, the
fraction of ones in the observed sequence
will be close to p with high probability
(due to WLLN). Equivalently, the obser-
ved sequence will have probability close
to pnp(1− p)n(1−p) = 2−nH2(p).
Asymptotic Equipartition Property (AEP):
If Xn = (X1, · · · ,Xn) are i.i.d. ∼ PX , then
for any ε > 0,

lim
n→∞

P r
(∣∣∣∣∣−1

n
logP (Xn)−H(X)

∣∣∣∣∣ < ε) = 1

The typical set Aε,n with respect to P is
the set of sequences Xn ∈ Xn with the
property:

2−n(H(X)+ε) ≤ P (Xn) ≤ 2−n(H(X)−ε)

If Xn = (X1, · · · ,Xn) are i.i.d. ∼ PX , then:

lim
n→∞

P r
(
Xn ∈ Aε,n

)
= 1

Let |Aε,n| denote the number of elements
in the typical set Aε,n.∣∣∣Aε,n∣∣∣ ≤ 2n(H(X)+ε)

For sufficiently large n,∣∣∣Aε,n∣∣∣ ≥ (1− ε)2n(H(X)−ε)

2.4 Compression
For any n, a compression code is defi-
ned as follows: To each source sequence
Xn = (X1, · · · ,Xn), the code assigns a uni-
que binary sequence c(Xn) called the co-
deword for the source sequence Xn. Let
l(Xn) be the length of the codeword as-
signed to Xn, i.e., the number of bits in
c(Xn), the expected code length is defi-
ned as:

E

[
l(Xn)

]
=

∑
xn
P (xn)l(xn)

Compression via the Typical Set:

1. Index each sequence in Aε,n using
dn(H(X) + ε)e bits. Prefix each of
these by a flag bit 0.

2. Index each sequence not in Aε,n
using dlog |X |ne bits. Prefix each of
these by a flag bit 1.

E

[
l(Xn)

]
≤ n(H(X) + ε′)

ε′ = ε+ ε log |X |+ 2
n can be made arbitra-

rily small by picking ε small enough and
then n sufficiently large.
Let Xn be i.i.d. ∼ P . Fix any ε > 0. For
n sufficiently large, there exists a code
that maps sequences Xn of length n into
binary strings such that the mapping is
one-to-one and

E

[1
n
l(Xn)

]
≤H(X) + ε

The expected length of any uniquely de-
codable code satisfies

E

[1
n
l(Xn)

]
≥H(X)

Hence entropy is the fundamental limit
of lossless compression.
A code is called prefix-free or instanta-
neously decodable if no codeword is the
prefix of another.
Kraft Inequality: A binary prefix-free co-
de with codeword lengths l1, l2, · · · , lN
exists if and only if

N∑
i=1

2−li ≤ 1

3F7 Information Theory & Coding
by Ziyi Z., Page 2 in 4

Suppose any prefix-free code that assigns
binary codewords to blocks of N source
symbols XN = (X1, · · · ,XN). If X is an iid
source, then

E

[
l(XN)

]
N

≥ H(XN)
N

=H(X)

2.5 Practical Source Coding
For a source which can take m values
with probabilities p1, · · · ,pm, expected
code length L is:

L =
m∑
i=1

pi li ≥
m∑
i=1

pi log2
1
pi

=H(X)

Shannon-Fano Coding:

li =
⌈
log2

1
pi

⌉
To construct the code with these code
lengths, we simply grow a tree from its
root placing codewords on leaves as we
reach the required depths.

L <
∑
i

pi

(
log2

1
pi

+ 1
)

=H(X) + 1

Huffman Coding:
1. Take the two least probable sym-

bols in the alphabet. These two
symbols will be given the longest
codewords, which will have equal
length, and differ only in the last
digit.

2. Combine these two symbols into a
single symbol, and repeat.

Optimality: For a given set of probabili-
ties, there is no prefix-free code that has
smaller expected length than the Huff-
man code.
Interval Coding: The binary codeword for
a symbol with probability p represented
by the interval [a,a+ p) can be obtained
as follows:

1. Find the largest dyadic interval of

the form [j
2l
, j+1

2l
) that lies within

[a,a+ p). (Here j, l are integers)
2. Take the binary representation of

the lower end-point of the dya-
dic interval as the codeword. (This
will be the integer j converted to
binary and represented using l
bits.)

L ≤
∑
i

pi

(⌈
log2

1
pi

⌉
+ 1

)
< H(X) + 2

Arithmetic Coding: From interval coding
for the first symbol, we divide the chosen
interval for X1 in the proportions of the
symbol probabilities for X2, and repeat.
The expected code length per symbol is:

Ln
n
<
H(Xn)
n

+
2
n

=H(X) +
2
n

With growing n, arithmetic coding can
achieve expected code length/symbol
that is arbitrarily close to the source
entropy.
Often the true distribution of the source
is unknown. Suppose that the true pmf
of a rv is P = {p1, . . . ,pm} and the estima-
ted pmf is P̂ = {p̂1, . . . , p̂m}. The average
code-length is:

L =
∑
i

pi log
1
p̂i

=H(P) +D(P ‖P̂)

Design a code using a distribution P̂ that
minimizes the worst-case redundancy
over this class of distributions P . With
this choice, the minimax redundancy is:

R∗ = min
P̂

max
P ∈P

D(P ‖P̂)

3 Data Transmission
3.1 Discrete Channels
Transmitter does two things:

1. Coding: Adding redundancy to the
data bits to protect against noise.

2. Modulation: Transforming the co-
ded bits into waveforms.

Binary Symmetric Channel (BSC):

X = 0 Y = 0

X = 1 Y = 1

1− p

1− p

p

p

The channel is called BSC(p) and p is the
crossover probability.

(1,n) Repetition Code: Data rate = 1
n

bits/transmission.
A discrete memoryless channel (DMC)
is a system consisting of an input alpha-
bet X , output alphabet Y , and a set of
transition probabilities:

PY |X (b | a) = Pr(Y = b | X = a)

Binary erasure channel (BEC):

X = 0 Y = 0

X = 1 Y = 1

?

1− ε

1− ε

ε

ε

When the demodulator thinks the (real-
valued) output symbol is too noisy, it can
declare an erasure.
For a general DMC, we can construct a
set of input sequences which have non-
intersecting sets of output sequences with
high probability.
3.2 Channel Capacity
The channel capacity of a discrete memo-
ryless channel is defined as:

C = max
PX

I(X;Y)

For Noiseless Binary Channel, I(X;Y) =
H(X).

C = max
PX

H(X) = 1

For BSC, I(X;Y) =H(Y)−H2(p).

C = max
PX

H(Y)−H2(p) = 1−H2(p)

For BEC, I(X;Y) =H(Y)−H2(ε). Let the
input distribution be PX = (α,1−α).

H(Y) =H2(ε) + (1− ε)H2(α)

C = max
PX

(1− ε)H2(α) = 1− ε

Maximum value is attained when PX =(
1
2 ,

1
2

)
.

3.3 Channel Code
An (n,k) channel code of rate R for the
channel (X ,Y , PY |X) consists of:

1. A set of messages
{
1, . . . ,2k = 2nR

}
2. An encoding function Xn :{

1, . . . ,2nR
}
→ Xn that assigns a

codeword to each message. The set
of codewords

{
Xn(1), . . . ,Xn

(
2nR

)}
is called the codebook

3. A decoding function g : Yn →{
1, . . . ,2nR

}
which produces a guess

of the transmitted message for
each received vector

The rate R of the code is R = k
n

bits/transmission.
The maximal probability of error of the
code is defined as:

max
j∈{1,...,2nR}

Pr(Ŵ , j |W = j)

The average probability of error of the
code is

1
2nR

2nR∑
j=1

Pr(Ŵ , j |W = j)

W and Ŵ denote the transmitted, and
decoded messages respectively.
The Channel Coding Theorem:

1. Fix R < C and pick any ε > 0. Then,
for all sufficiently large n there
exists a length-n code of rate R
with maximal probability of error
less than ε.

2. Conversely, any sequence of
length-n codes of rate R with
average/maximal probability of

error P
(n)
e → 0 as n → ∞ must

have R ≤ C.

Assuming a uniform prior on the mes-
sages, the optimal decoding rule is max-
likelihood decoding:

Ŵ = argmax
Ŵ

n∏
i=1

PY |X (Yi | Xi (W))

3.4 Joint Typicality
The set Aε,n of jointly typical sequences
{(xn, yn)} with respect to a joint pmf PXY
is defined as Aε,n = {(xn, yn) ∈ Xn ×Yn}
such that:∣∣∣∣∣−1

n
logPX (xn)−H(X)

∣∣∣∣∣ < ε∣∣∣∣∣−1
n

logPY (yn)−H(Y)
∣∣∣∣∣ < ε∣∣∣∣∣−1

n
logPXY (xn, yn)−H(X,Y)

∣∣∣∣∣ < ε
The Joint AEP: Let (Xn,Y n) be a pair of
sequences drawn i.i.d. according to PXY ,
then for any ε > 0:

1. Pr
(
(Xn,Y n) ∈ Aε,n

)
→ 1 as n→∞

2.
∣∣∣Aε,n∣∣∣ ≤ 2n(H(X,Y)+ε)

3. If
(
X̃n, Ỹ n

)
are a pair of sequences

drawn i.i.d. according to PXPY :

Pr
((
X̃n, Ỹ n

)
∈ Aε,n

)
≤ 2−n(I(X;Y)−3ε)

Joint Typicality Decoder: The decoder de-
clares that the message Ŵ was sent if
both the following conditions are satis-
fied:

1.
(
Xn(Ŵ),Y n

)
is jointly typical with

respect to PXPY |X .

2. There exists no other message
W ′ , Ŵ such that (Xn (W ′) ,Y n) is
jointly typical.

If no such Ŵ is found or there is more
than one such, an error is declared.
The average probability of error for a gi-
ven codebook B is:

Pe(B) =
1

2nR

2nR∑
w=1

Pr(Ŵ , w | B,W = w)

For any ε > 0, when R < I(X;Y) − 3ε,
the probability of error averaged over all
messages and all codebooks is:

P e =
∑
B
Pe(B)Pr(B) ≤ 2ε

There exists at least one codebook B∗
with Pe(B∗) ≤ 2ε.
3.5 Data Processing
Random variables X,Y ,Z are said to
form a Markov chain if their joint pmf
can be written as:

PXYZ = PXPY |XPZ |Y

If X − Y −Z form a Markov chain, then
I(X;Y) ≥ I(X;Z).

Fano’s Inequality: For any estimator X̂
such that X − Y − X̂, the probability of
error Pe = Pr(X̂ , X) satisfies:

1 + Pe log |X | ≥H(X | X̂) ≥H(X | Y)

Pe ≥
H(X | Y)− 1

log |X |

The data-processing inequality tells us
that H(X | X̂) ≥H(X | Y).
Let Y n be the result of passing a se-
quence Xn through a DMC of channel

3F7 Information Theory & Coding
by Ziyi Z., Page 3 in 4

capacity C. Then I (Xn;Y n) ≤ nC regard-
less of the distribution of Xn.
Channel Coding Converse: Consider any
(2nR,n) channel code with average pro-
bability of error Pe:

Pe ≥ 1− C
R
− 1
nR

Thus, unless R ≤ C, Pe is bounded away
from 0 as n→∞.
4 Channel Coding
4.1 The Additive White Gaussian Noise

(AWGN) Channel
The continuous-time AWGN channel:

Y (t) = X(t) +N (t)

Usual assumptions on the channel:

1. Input X(t) is power-limited to P .
2. X(t) is band-limited to W .
3. Noise N (t) is a random process as-

sumed to be white Gaussian.
The discrete-time AWGN channel:

Yk = Xk +Zk , k = 1,2, . . .

Average power constraint P on input:

1
n

n∑
k=1

X2
k ≤ P

Zk are i.i.d. Gaussian with mean 0, va-
riance σ2.N

(
0,σ2

)
.

4.2 Di�erential Entropy
The differential entropy of a continuous
random variable X with pdf fX is:

h(X) =
∫ ∞
−∞

fX (u) log
1

fX (u)
du

Gaussian random variable: Let X ∼
N

(
µ,σ2

)
. The pdf φ is given by:

φ(x) =
1

√
2πσ2

e
−(x−µ)2

2σ2

The joint differential entropy of X,Y is:

h(X,Y) =
∫
fXY (u,v) log

1
fXY (u,v)

dudv

The conditional differential entropy of X
given Y is:

h(X | Y) =
∫
fXY (u,v) log

1
fX |Y (u | v)

dudv

4.3 The AWGN Channel
The capacity of the AWGN channel with
power constraint P is C = max I(X;Y)

I(X;Y) = h(Y)− h(Y | X) = h(Y)− h(Z)

Among all random variables Y with
EY 2 ≤

(
P + σ2

)
, the maximum differenti-

al entropy is achieved when Y is Gaussi-
anN

(
0, P + σ2

)
.

h(Y) ≤ 1
2

log2πe
(
P + σ2

)
The capacity of the discrete-time AWGN
channel with input power constraint P
and noise variance σ2 is:

C =
1
2

log
(
1 +

P

σ2

)
4.4 Channel Coding
A channel coding system consists of two
parts:

1. Channel Encoder: Adds redundan-
cy to the source bits in a controlled
manner.

2. Channel Decoder: Recovers the
source bits from the received bits
by exploiting the redundancy.

An (n,k) binary block code maps every
block of k data bits into a length n binary
codeword. The rate R of the code is R = k

n .
Assuming the codewords are distinct, the
number of codewords is M = 2k .
The Hamming distance d(x,y) between
two binary sequences x,y of length n is
the number of positions in which x and
y differ.
Let B be a code with codewords{
c1, . . . , cM

}
. Then the minimum distance

dmin is the smallest Hamming distance
between any pair of codewords:

dmin = min
i,j

d
(
ci , cj

)
4.5 Optimal Decoding of a Block Code
The optimal decoder is the one that mini-
mises the probability of decoding error.
Optimal decoding on the BSC(p):

Decode ĉ = argmin
c∈{c1,...,cM }

d(y,c)

For p < 1
2 , the optimal decoder for BSC

picks the codeword closest in Hamming

distance to y. We can successfully correct

any pattern of t errors if t ≤
⌊
dmin−1

2

⌋
.

4.6 Linear Block Codes
A (n,k) linear block code (LBC) is defi-
ned in terms of k length-n binary vec-
tors g

1
, . . . , g

k
. A sequence of k data bits

x = (x1, . . . ,xk) is mapped to a length-n
codeword c as follows.

c = x1g1
+ x2g2

+ . . .+ . . .+ xkgk

c = xG = x

g1
...
g
k

The k × n matrix G is called a generator
matrix of the code. k is called the code
dimension, n is the block length. The ge-
nerator matrix for a code (i.e., a set of
codewords) is not unique.
The systematic generator matrix is of the
form:

G = [Ik | P]

In a systematic code, the length-n code-
word consists of the k data bits x, follo-
wed by (n− k) parity bits xP .

c = x [Ik | P] = [x | xP]

Let C be an (n,k) LBC with codewords
{c0, . . . , cM−1}. C is a subspace of {0,1}n,
i.e., it is closed under vector addition and
scalar multiplication. Hence, the sum of
any two codewords is also a codeword;
the all-zero vector 0 is always a code-
word.
4.7 The Parity Check Matrix
The orthogonal complement of C, deno-
ted C⊥ is defined as the set of all vectors
in {0,1}n that are orthogonal to each vec-
tor in C. We can find a basis

{
h1, . . . ,hn−k

}
for C⊥, expressed as:

H =

h1
...

hn−k

The (n− k)×n matrix H is called the pa-
rity check matrix. If we have systematic
G = [Ik | P] then:

H =
[
P T | In−k

]
The codewords satisfy cHT = 0.

The minimum distance of an LBC equals
the minimum Hamming weight among
the non-zero codewords.

dmin = min
i,j

wt
(
ci + cj

)
= min
ck,0

wt
(
ck

)
Let C be an linear block code with parity
check matrix H . The minimum distance
of C is the smallest number of columns
of H that sum to 0.
4.8 Low Density Parity Check Codes
In a regular (n,k) LDPC code:

1. Each of the n codeword bits (varia-
ble) is involved in dv parity check
equations, where dv is the column
weight.

2. Each of the (n − k) parity check
equations (check) involves dc code
bits, where dc is the row weight.

The design rate of a regular LDPC code
is:

k
n

= 1− dv
dc

The design rate is the true code rate if
the rows of the parity check matrix are
linearly independent.
For irregular codes, we need to specify
the weight distributions on the columns
and rows.
4.9 Iterative Decoding as Message Pas-

sing
Message passing is a class of iterative al-
gorithms, where in each step:

1. Each variable node v sends a mes-
sage mvc to each check node c that
it is connected to.
mvc = x ∈ {0,1} if v = x or at least
one incoming mc′v = x.
mvc =? if v =? and all incoming
mc′v =?.

2. Each check node c sends a message
mcv to each variable node v that it
is connected to.
mcv =

∑
v′ mv′c mod 2 if no

mv′c =?.
mcv =? if at least one incoming
mv′c =?.

4.10 Degree Distributions
We can define degree distributions from
the node perspective:

• Li : Fraction of left (variable) no-
des of degree i, i.e., the fraction of
columns in H with weight i.

• Ri : Fraction of right (check) no-
des of degree i, i.e., the fraction of
rows in H with weight i.

The node-perspective polynomials are:

L(x) =
dv,max∑
i=1

Lix
i , R(x) =

dc,max∑
i=1

Rix
i

The average degree of a variable node is

dv =
∑dv,max
i=1 iLi = L′(1).

The average degree of a check node is

dc =
∑dc,max
i=1 iRi = R′(1).

The total number of edges in the graph
(number of ones in H) is dvn = dc(n− k).
We can also define degree distributions
from the edge perspective:

• λi : Fraction of edges connected to
variable nodes of degree i, i.e., the
fraction of ones in H in columns
of weight i.

• ρi : Fraction of edges connected to
check nodes of degree i, i.e., the
fraction of ones in H in rows of
weight i.

The edge-perspective polynomials are:

λ(x) =
dv,max∑
i=1

λix
i−1, ρ(x) =

dc,max∑
i=1

ρix
i−1

The average variable node degreee and
average check node degree satisfy:

dv =
(∫ 1

0
λ(x)dx

)−1

dc =
(∫ 1

0
ρ(x)dx

)−1

The design rate can be expressed as:

k
n

= 1− dv
dc

= 1−

∫ 1
0 ρ(x)dx∫ 1
0 λ(x)dx

3F7 Information Theory & Coding
by Ziyi Z., Page 4 in 4

4.11 Density Evolution
For regular LDPC codes:
Let pt denote the probability that an
outgoing v→ c message (along an edge
picked uniformly at random) is an erasu-
re (?) in step t.

pt = ε (qt−1)dv−1

Let qt denote the probability that an out-
going c→ v message is a ? in step t.

qt = 1− (1− pt)dc−1

The density evolution recursion predicts
the fraction of erased bits at the end of
each step t. We initialise the recursion
with p0 = ε and q0 = 1.

pt = ε
(
1− (1− pt−1)dc−1

)dv−1

The Shannon limit: The maximum possi-
ble ε for reliable decoding with any rate
R code, is ε∗ = 1−R = 0.5.
For irregular LDPC ensembles with
λ(x) =

∑
i λix

i−1 and ρ(x) =
∑
i ρix

i−1.

pt = ε
∑
i

λiq
i−1
t−1 = ελ (qt−1)

qt = 1−
∑
j

ρj (1− pt)j−1 = 1− ρ (1− pt)

The density evolution equation for a
(λ(x),ρ(x)) ensemble:

pt = ελ (1− ρ (1− pt−1))

For a given rate R, we want to get the ma-
ximum possible threshold εMP for which
pt → 0.
4.12 Message Passing Decoding
In each iteration, the message passing
decodes computes:

1. Variable-to-check messages:

mji (0) ∝ P
(
cj = 0 | yj

)∏
i′\i

mi′j (0)

mji (1) ∝ P
(
cj = 1 | yj

)∏
i′\i

mi′j (1)

mji (0) +mji (1) = 1

mji (0) is an updated estimate of
the posterior probability (or belief)
that the code bit cj = 0.

2. Check-to-variable message:

mij (0) =
1
2

+
1
2

∏
j ′\j

(
1− 2mj ′ i (1)

)
mij (1) = 1−mij (0)

mij (0) is an updated estimate of
the probability that the parity
check equation i is satisfied when
cj = 0.

At t = 1, set mji (0) = P
(
cj = 0 | yj

)
for all

edges j→ i. Also setmij (0) = 1
2 for all ed-

ges i→ j. The message passing decoding
algorithm is often called the sum-product
algorithm or belief propagation.
4.13 Computing a Posteriori Probabili-

ties (APPs)
The a posteriori probabilities (APPs) can
be calculated using Bayes rule and the
channel transition probabilities:

P
(
cj | yj

)
=
P
(
cj
)
P
(
yj | cj

)
P
(
yj

)
For BEC(ε) : yj ∈ {0,1,?}:

P
(
cj = 0 | yj

)
=

 1, if yj = 0
0, if yj = 1

1/2, if yj =?

For BSC(p) : yj ∈ {0,1}:

P
(
cj = 0 | yj

)
=

{
1− p, if yj = 0
p, if yj = 1

For B-AWGN channel: yj ∈R:

P
(
cj = 0 | yj

)
=

1

1 + e
−2yj
σ2

4.14 Log-Domain Message Passing
The belief propagation decoding is usual-
ly implemented with log-likelihood rati-
os (LLRs).

Lji = ln
mji (0)

mji (1)
, Lij = ln

mij (0)

mij (1)

The LLR-based belief propagation upda-
tes are given by:

1. Variable-to-check message:

Lji = L
(
yj

)
+
∑
i′\i

Li′j

2. Check-to-variable message:

Lij = 2tanh−1

∏
j ′\j

tanh
(1

2
Lj ′ i

)
At t = 1, set Lji = L

(
yj

)
for all edges

j→ i, and set Lij = 0 for all edges i→ j.

(The End)

