
3F8 Inference
by Ziyi Z., Page 1 in 3

1 Regression
1.1 Linear Regression

For a data set D = {(xn, yn)}Nn=1 for-
med by pairs of input vectors xn =(
xn,1, . . . ,xn,D

)>
and outputs yn ∈ R, we

assume:

yn = [w0, . . . ,wD]

1
xn,1
...

xn,D

+ εn

= w>x̃n + εn

The errors or noise εn ∼ N
(
0,σ2

)
and

x̃n = (1,xn)> ,θ =
{
σ2,w

}
.

p (yn | x̃n,θ) =N
(
yn |w>x̃n,σ2

)
w are the coefficients, weights, etc. (w0
is called the bias or intercept).
1.2 Maximum Likelihood Estimate
Maximize the likelihood function
p (y1, . . . , yn | x̃1, . . . , x̃n,θ) with respect to
θ.
The log-likelihood function:

L(θ) = log
N∏
n=1

p (yn | x̃n,θ)

=
N∑
n=1

logN
(
yn |w>x̃n,σ2

)
Let y = (y1, . . . , yn)> , X̃ = (̃x1; . . . ; x̃n)>:

L(θ) = −N
2

log
(
2πσ2

)
− y>y

2σ2 −
w>X̃>X̃w

2σ2 +
y>X̃w
σ2

The Linear Least Squares Solution (LLSS):

w =
(
X̃>X̃

)−1
X̃>y

σ2 =
1
N

(y− X̃w)>(y− X̃w)

Linear regression can model non-linear
relationships by replacing x with some
non-linear function of the inputs φ(x) =
(φ1(x), . . . ,φM (x))>.

2 Bayesian Linear Regression
2.1 Overfitting
A large number of basis functions can
lead to over-fitting: the model fits the trai-
ning data well but it performs poorly on
new test data.
2.2 Bayesian Inference
Assume a prior distribution p(w) on the
model coefficients. The posterior distribu-
tion for w given D is obtained by Bayes
rule:

p(w | y, X̃) =
p(y | X̃,w)p(w)

p(y | X̃)

The predictive distribution for y? given a
new corresponding x? is:

p
(
y? | x̃? ,y, X̃

)
=∫

p (y? | x̃? ,w)p(w | y, X̃)dw

2.3 Multivariate Gaussian Distribution
The density of a D -dimensional vector x
is:

N (x |m,V) =
1√

(2π)D |V|

exp
{
−1

2
(x−m)>V−1(x−m)

}
The density is proportional to the expo-
nential of a quadratic function of x:

p(x) ∝ exp
{
−1

2
x>V−1x+m>V−1x

}
The parameter m determines mode loca-
tion and V scales and rotates the space.
2.4 Linear Combination of Gaussian

Random Variables
Let p(x) = N (x | 0,V1) and p(e) =
N (e | 0,V2) and assume that, for a ma-
trix W:

y = Wx+ e
Then p(y) is Gaussian with mean vector
and covariance matrix:

m3 = WE[x] +E[e] = 0

V3 = WV1W
> +V2

2.5 Product of Gaussian Densities
Let p(x) = N (x |m1,V1) and q(x) =
N (x |m2,V2). Then t(x) ∝ p(x)q(x) is
GaussianN (x |m3,V3) where:

V3 =
(
V−1

1 +V−1
2

)−1

m3 = V3
(
m>1 V−1

1 +m>2 V−1
2

)>

2.6 Bayesian Linear Regression
We choose the prior for w to be a zero-
mean isotropic Gaussian:

p(w) =N
(
w | 0,λ−1I

)
∝ exp

{
−1

2
w>λIw

}
The posterior is then Gaussian:

p
(
w | y, X̃,σ2

)
∝ p(y | X̃,w)p(w)

p
(
w | y, X̃,σ2

)
=N (w |m,V) where:

V =
(
X̃>X̃σ−2 +λI

)−1

m = Vσ−2X̃>y

2.7 The Bayesian Predictive Distributi-
on

The predictive distribution for the y? of
a given new corresponding x̃? is:

p
(
y? | x̃? ,y, X̃

)
=∫

N
(
y? |w>x̃? ,σ2

)
N (w |m,V)dw

We have that y? = w>x̃? + e? , where
w ∼ N (m,V) and e? ∼ N

(
0,σ2

)
. Thus:

p
(
y? | x̃? ,y, X̃

)
=N (y? |m? ,v?)

m? = m>x̃? and v? = x̃>? Vx̃? + σ2.
2.8 MAP Inference
Maximum a posteriori (MAP) inference is
a form of regularized MLE.

wMAP = argmax
w

{
logp(y |w, X̃) + logp(w)

}
= argmax

w

{
logp(y |w, X̃)− λ

2
w>w

}
=

(
X̃>X̃σ−2 +λI

)−1
σ−2X̃>y

Assumes that the posterior is well appro-
ximated by a point mass at its mode:

p
(
y? | x̃? ,y, X̃

)
≈

∫
p (y? | x̃? ,w)δ (w−wMAP)dw

≈ p (y? | x̃? ,wMAP)

MAP inference fails to generate confi-
dence bands in the resulting predictions

3 Classification
3.1 Linear Classification
Given a training set D = {(xn, yn)}Nn=1 of

inputs xn =
(
xn,1, . . . ,xn,D

)>
and discrete

outputs yn ∈ {1, . . . ,C}, where C is the
number of classes or categories, we aim
to identify:

1. A partition of the input space in-
to C decision regions, one for each
class.

2. A measure of confidence (probabi-
lity) in the decisions.

The decision regions are separated by de-
cision boundaries at which two classes ha-
ve equal predictive probability.
Deterministic linear classification maps
the output of the linear model into dis-
crete class labels. Assume yn ∈ {0,1} (bi-
nary classification). Then, we can define
yn = H

(
w>x̃

)
where H(x) is the Heavi-

side step function.

H(x) =
{

1 if x ≥ 0
0 otherwise

Probabilistic linear classification maps the
output of the linear model into class pro-
babilities.

p (yn = 1 | x̃,w) = σ
(
w>x̃

)
σ (·) is a monotonically increasing functi-
on that maps R into [0,1]:

1. The logistic function:

σ (x) =
1

1 + exp(−x)

2. The probit function (Gaussian CDF):

σ (x) =
∫ x

−∞
N (z | 0,1)dz

3.2 Logistic Regression
Assume σ (x) is the logistic function and
that yn ∈ {−1,1}. Then

p (yn | xn,w) = σ
(
ynw

>x̃n
)

For D = {xn, yn}Nn=1 , the log-likelihood is:

L(w) =
N∑
n=1

logσ
(
ynw

>x̃n
)

We can then use dσ (x)/dx = σ (x)(1−σ (x))
to obtain the gradient:

dL(w)
dw

=
N∑
n=1

yn
(
1− σ

(
ynw

>x̃n
))
x̃n

3.3 Gradient Ascent
The batch gradient ascent rule to maxi-
mize L(w) is:

wnew = wold +α
dL(w)
dw

The learning rate is α > 0.
Multi-class linear classification: The soft-
max function maps the outputs into class
probabilities:

p (yn = k |w1, . . . ,wK , x̃n)

=
exp

(
w>k x̃n

)
∑K
k′=1 exp

(
w>k′ x̃n

)
This is equivalent to logistic regression
when C = 2.
Non-linear logistic regression: Replace x
with non-linear functions of the inputs
φ(x) = (φ1(x), . . . ,φM (x))>.
4 Dimensionality Reduction
4.1 Principal Component Analysis
The principal component analysis (PCA)
is a linear dimensionality reduction me-
thod. It assumes data manifold to be li-
near and finds the projection that mini-
mised the squared reconstruction error.
Given a dataset D = {x1, . . . ,xN } , with
xn ∈RD ,

∑N
n=1 xn = 0.

By using the orthonormal basis {ui }Di=1:

xn =
M∑
i=1

x>n uiui︸ ︷︷ ︸
x′n

+
D∑

i=M+1

x>n uiui︸ ︷︷ ︸
εn

x′n is the projected vector and εn is
the reconstruction error. u1, . . . ,uD are
called the principal component vectors.
x>n u1, . . . ,x

>
n uD ,n = 1, . . . ,N , are called

the principal component scores.
PCA finds u1, . . . ,uD by minimising the

3F8 Inference
by Ziyi Z., Page 2 in 3

sum of square errors:

cost
(
{ui }Di=1

)
=

1
N

N∑
n=1

ε>n εn

=
D∑

i=M+1

u>i Ŝui

Ŝ =N−1 ∑N
n=1 xnx

>
n is the covariance ma-

trix for the data.
4.2 Lagrange Multipliers
The method of Lagrange Multipliers al-
lows us to solve optimization problems
with equality constraints.
The Lagrangian function: Maximize f (x,y)
subject to g(x,y) = c:

L(x,y,λ) = f (x,y) +λ(g(x,y)− c)

λ is called the Lagrange multiplier.
For PCA, we use Lagrange multipliers
to guarantee that the {ui }Di=1 are norma-
lized, i.e., u>i ui = 1 for i = 1, . . . ,D. The
resulting Lagrangian is:

L
(
{ui }Di=M+1 ,λM+1, . . . ,λD

)
=

D∑
i=M+1

[
u>i Ŝui +λi

(
1−u>i ui

)]
Hence Ŝui = λiui . The ui and λi are ei-
genvectors and eigenvalues of Ŝ.

cost
(
{ui }Di=1

)
=

D∑
i=M+1

λi

The PCA solution is given by the {ui }Di=1
such that:

1. uM+1, . . . ,uD are eigenvectors of Ŝ
with the D −M smallest eigenva-
lues.

2. u1, . . . ,uM are eigenvectors of Ŝ
with the M largest eigenvalues.

5 Clustering
5.1 K-means Clustering
Let sn,k = 1 if data point n is assigned to
cluster k and zero otherwise. Note that∑K
k=1 sn,k = 1.

K-means tries to minimise the cost func-
tion C with respect to

{
sn,k

}
and {mk} ,

subject to
∑
k sn,k = 1 and sn,k ∈ {0,1}.

C
({
sn,k

}
, {mk}

)
=

N∑
n=1

K∑
k=1

sn,k ‖xn −mk‖2

K-means sequentially:

1. Minimises C with respect to
{
sn,k

}
,

holding {mk} fixed.

sn = argmin
k
‖xn −mk‖

2. Minimises C with respect to {mk},
holding

{
sn,k

}
fixed.

mk = mean(xn : sn = k)

5.2 Mixture of Gaussians
For each data point 1 . . .N sample
cluster membership: p (sn = k | θ) = πk
(Note

∑K
k=1πk = 1) and sample data-

value given cluster membership:
p (xn | sn = k,θ) =N (xn;mk ,Σk).
5.3 Kullback-Leibler Divergence
The KL-divergence is given by:

KL (p1(z)‖p2(z)) =
∑
z

p1(z) log
p1(z)
p2(z)

The properties of KL-divergence:

1. Gibb’s inequality (non-negativity):
KL (p1(z)‖p2(z)) ≥ 0, equality at
p1(z) = p2(z).

2. Non-symmetric: KL (p1(z)‖p2(z)) ,
KL (p2(z)‖p1(z)).

We can obtain a lower bound on the log-
likelihood logp(x | θ) using an arbitrary
distribution over class memberships q(s):

F (q(s),θ) =

logp(x | θ)−
∑
s
q(s) log

q(s)
p(s | x,θ)

F (q(s),θ) is called the free-energy which
equals to log-likelihood when q(s) = p(s |
x,θ).

F (q(s),θ) =
∑
s
q(s) log

p(x | s,θ)p(s | θ)
q(s)

5.4 The Expectation Maximisation (EM)
Algorithm

From initial (random) parameters θ0 ite-
rate t = 1, . . . ,T the two steps:

1. E step: For fixed θt−1, maximi-
ze lower bound F (q(s),θt−1)
wrt q(s). As log likelihood
logp(x | θ) is independent of
q(s) this is equivalent to mini-
mizing KL (q(s)‖p (s | x,θt−1)) , so
qt(s) = p (s | x,θt−1).

2. M step: For fixed qt(s) maximize
the lower bound F (qt(s),θ) wrt θ.

θt = argmax
θ∑

s
qt(s) log(p(x | s,θ)p(s | θ))

Mixture of Gaussians: Probability of the
observations given the latent variables
and the parameters, and the prior on la-
tent variables are:

p (xn | sn = k,θ) =
1√

2πσ2
k

e
− 1

2σ2
k

(xn−µk)2

p (sn = k | θ) = πk

The E step becomes:

q (sn = k) ∝ πk√
2πσ2

k

e
− 1

2σ2
k

(xn−µk)2

= unk

q (sn = k) = rnk =
unk∑K
k=1unk

rnk is called the responsibility that com-
ponent k takes for data point n.
The M step, optimizing F (q(s),θ) wrt the
parameters, θ:

µj =

∑N
n=1 q (sn = j)xn∑N
n=1 q (sn = j)

σ2
j =

∑N
n=1 q (sn = j)

(
xn −µj

)2∑N
n=1 q (sn = j)

πj =
1
N

N∑
n=1

q (sn = j)

6 Sequence Modelling
6.1 Markov Models for Discrete Data
Markov models of order n are called n-
gram models.

First order Markov (bi-gram):

p (y1, y2, . . . , yT) =

p (y1)p (y2 | y1) . . .p (yT | yT−1)

Discrete states yt ∈ {1, . . . ,K} with in-
itial state probabilities p (y1 = k) = π0

k
and transition probabilities (stocha-
stic matrix) p (yt = k | yt−1 = l) = Tk,l
(
∑K
k=1 Tk,l = 1).

Second order Markov (tri-gram):

p (y1, y2, . . . , yT) =

p (y1)p (y2 | y1) . . .p (yT | yT−1, yT−2)

The transition probabilities
p (yt = k | yt−1 = l,yt−2 =m) = Tk,l,m.
Hence n-grams require large multidi-
mensional arrays.
6.2 Markov Models for Continuous Da-

ta
AR(q) is the Auto-Regressive (AR) Gaussi-
an model of order q.
First order Markov (AR(1)):

Continuous vector states yt ∈ R
D with

initial state density p (y1) = G (y1;µ0,Σ0)
and transition density p (yt | yt−1) =
G (yt ;Λyt−1,Σ).
Second order Markov (AR(2)):
The transition densi-
ty is p (yt | yt−1, yt−2) =
G (yt ;Λ1yt−1 +Λ2yt−2,Σ). Joint dis-
tribution over all variables is always
multivariate Gaussian.
7 Hidden Markov Models
Discrete Hidden State xt ∈ {1, . . . ,K}:

p (xt = k | xt−1 = l) = Tk,l

Continuous Observed State:

p (yt | xt = k) = G (yt ;µk ,Σk)

Discrete Observed State:

p (yt = l | xt = k) = Sl,k

p (y1:T ,x1:T) =
T∏
t=1

p (xt | xt−1)p (yt | xt)

Marginalise latents to obtain fully
connected model:

7.1 Linear Gaussian State Space Mo-
dels (LGSSMs)

Continuous Hidden State xt ∈RK :

p (xt | xt−1) = G (xt ;Axt−1,Q)

Continuous Observed State yt ∈RD :

p (yt | xt) = G (yt ;Cxt ,R)

7.2 Inference
Distributional estimates:

marginal joint
filter p (xt | y1:t) p (x1:t | y1:t)

smoother p (xt | y1:T) p (x1:T | y1:T)

Point estimates:

1. Most probable state at t:

x∗t = argmax
xt

p (xt | y1:T)

2. Most probable sequence:

x′1:T = argmax
x1:T

p (x1:T | y1:T)

3F8 Inference
by Ziyi Z., Page 3 in 3

Kalman Filter:
Given p (xt−1 | y1:t−1) =
G
(
xt−1;µt−1

t−1,V
t−1
t−1

)
where the super-

script is the most recent data used
in prediction and the subscript is the
variable being predicted. Diffuse via
dynamics:

p (xt | y1:t−1) =∫
p (xt | xt−1)p (xt−1 | y1:t−1)dxt−1

Since xt = Axt + Q1/2εt , we obtain
p (xt | y1:t−1) = G

(
xt ;µ

t−1
t ,V t−1

t

)
:

µt−1
t = Aµt−1

t−1

V t−1
t = AV t−1

t−1 A
> +Q

Mean diffuses toward 0 and variance in-
flates. Combine with likelihood:

p (xt | y1:t) ∝ p (xt | y1:t−1)p (yt | xt)

= G
(
xt ;µ

t
t ,V

t
t

)
Defining the Kalman gain Kt =

V t−1
t C>

(
CV t−1

t C> +R
)−1

:

µtt = µt−1
t +Kt

(
yt −Cµt−1

t

)
V tt = V t−1

t −KtCV t−1
t

Forward Algorithm:

Given p (xt−1 = k | y1:t−1) = ρt−1
t−1(k). Dif-

fuse via dynamics:

p (xt = k | y1:t−1) =
K∑
l=1

p (xt = k | xt−1 = l)p (xt−1 = l | y1:t−1)

We obtain ρt−1
t (k) =

∑K
l=1 T (k, l)ρt−1

t−1(l).
Combine with likelihood:

p (xt = k | y1:t) ∝
p (xt = k | y1:t−1)p (yt | xt = k)

Hence ρtt (k) ∝ ρt−1
t (k)p (yt | xt = k).

(The End)

