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1 Regression
1.1 Linear Regression

For a data set D = {(x,,,yn)}Z]:1 for-

med by pairs of input vectors x, =
T

(xn,l,...,xnyD) and outputs v, € R, we

assume:

1
Xn,1

vn = [wo,...,wp] +é€y

Xn,D
=w'X, +e€,

The errors or noise €, ~ N(O,UZ) and
X, =(1,x,)7,0= {az,w}.

p(yn 1%, 0) = N(yn |WT;(7U02)

w are the coefficients, weights, etc. (wq
is called the bias or intercept).

1.2 Maximum Likelihood Estimate

Maximize the likelihood function
pW1,..., v | X1,..., X, 0) with respect to
0.

The log-likelihood function:

N
L(0) =log I_[P (Y 1%, 0)
n=1

N
= Zlog/\/(yn IWT;(”,UZ)

n=1

Lety=(v1,...,v0) X = (X5...;%,)

N 2
E(Q):—ilog(Zna )
y—j wiXTXw  y Xw

202

202 o2

The Linear Least Squares Solution (LLSS):
— =1 ~
w=(X"X) XTy
0% = < (y—Xw)T (y - Xw)
N

Linear regression can model non-linear
relationships by replacing x with some
non-linear function of the inputs ¢(x) =

(@1(x),.., pm(x)) T

2 Bayesian Linear Regression
2.1 Overfitting

A large number of basis functions can
lead to over-fitting: the model fits the trai-
ning data well but it performs poorly on
new test data.

2.2 Bayesian Inference

Assume a prior distribution p(w) on the
model coefficients. The posterior distribu-
tion for w given D is obtained by Bayes
rule:

< ply|X,w)p(w)
X) =R
p(w|y,X) oy 1%)

The predictive distribution for y, given a
new corresponding x, is:

p(ve 1%y, X) =
f P (2 | Koo w) p(w | y, K)dw

2.3 Multivariate Gaussian Distribution
The density of a D -dimensional vector x
1S:

1

Nx|m,V)= ———
(2m)PIv]

exp {—%(x —m)TV_l(x—m)}

The density is proportional to the expo-
nential of a quadratic function of x:

1
p(x) oc exp {faxTVflx + mTVflx}

The parameter m determines mode loca-
tion and V scales and rotates the space.

2.4 Linear Combination of Gaussian
Random Variables
Let p(x) = NM(x]|0,V]) and p(e) =
N (e|0,V5,) and assume that, for a ma-
trix W:
y=Wx+e

Then p(y) is Gaussian with mean vector
and covariance matrix:

m3 = WE[x] +E[e] =0
V3 =WV{W' 1V,
2.5 Product of Gaussian Densities
Let p(x) = N(x|my,Vy) and ¢q(x) =
N (x|mj,V3). Then t(x) o p(x)q(x) is
Gaussian N (x| m3,V3) where:
-1
Vs =(Vit+v3!)

Ty-1 Ty-1\T
m3:V3(m] Vl +m2V2 )

2.6 Bayesian Linear Regression

We choose the prior for w to be a zero-
mean isotropic Gaussian:

p(w) = ,/\/(w |0, /\711) o exp {f%wT/\Iw}
The posterior is then Gaussian:
p(wlyX,0%)ply X, wp(w)

P(W | Y,i,oz) = N(w|m,V) where:

V= (XTXo 2+ A1)
m = VU_ZF)ZTy

2.7 The Bayesian Predictive Distributi-
on

The predictive distribution for the y, of
a given new corresponding X, is:

p(ve 1%y, X) =
JN(y* |WTY*,02)N(W |m,V)dw

We have that y, = WX, + e,, where
w ~ N(m,V) and e, ~ N(0,0‘z). Thus:

P(}f* |§*7Y'i) =N (9x | 114, v4)

TX, and vy =X VX, + 02

2.8 MAP Inference

Maximum a posteriori (MAP) inference is
a form of regularized MLE.

My = M

WMAP = arg max{logp(y |'w,X) + 10gp(w)}
w

= argmax {logp(y | w,X) - %WTW}
w

— (XTXo ™2+ 1) 07Xy

Assumes that the posterior is well appro-
ximated by a point mass at its mode:

p(v# 1%y, X)
~ JP(ZJ* [ X4, W) 0 (W —wWpap) dW
~ P (V4 | Xy WMAP)

MAP inference fails to generate confi-
dence bands in the resulting predictions

3 Classification

3.1 Linear Classification

Given a training set D = {(xn,yn)}ﬁjzl of
. T .
inputs x,, = (xl’l,l" ..,x,,,D) and discrete

outputs y, € {1,...,C}, where C is the
number of classes or categories, we aim
to identify:

1. A partition of the input space in-
to C decision regions, one for each
class.

2. A measure of confidence (probabi-
lity) in the decisions.

The decision regions are separated by de-
cision boundaries at which two classes ha-
ve equal predictive probability.

Deterministic linear classification maps
the output of the linear model into dis-
crete class labels. Assume vy, € {0,1} (bi-
nary classification). Then, we can define

Vn = H(wTi) where H(x) is the Heavi-
side step function.

1 ifx>0
H(x) = { 0 otherwise

Probabilistic linear classification maps the
output of the linear model into class pro-
babilities.

pn=11%w)=0(w'%)

o(+) is a monotonically increasing functi-
on that maps R into [0,1]:

1. The logistic function:

1
T 1+exp(—x)

o(x)
2. The probit function (Gaussian CDF):
X
o(x) = f N(z]0,1)dz

3.2 Logistic Regression
Assume o(x) is the logistic function and
that v, € {-1,1}. Then

p(n | xp, W) = G(anTin)

For D = {xn,yn}nl\]:1 , the log-likelihood is:

N
Lw) =) logo(y,w'%y)
n=1

We can then use do(x)/dx = o(x)(1-0(x))
to obtain the gradient:

3.3 Gradient Ascent

The batch gradient ascent rule to maxi-
mize L£(w) is:

The learning rate is a > 0.

Multi-class linear classification: The soft-
max function maps the outputs into class
probabilities:

pn=klwy,..., Wk, Xy)
exp(w;'fn)

] Loy X (Wi %)

This is equivalent to logistic regression
when C = 2.

Non-linear logistic regression: Replace x
with non-linear functions of the inputs

P(x) = (¢1(x),..., M) T

4 Dimensionality Reduction

4.1 Principal Component Analysis
The principal component analysis (PCA)
is a linear dimensionality reduction me-
thod. It assumes data manifold to be li-

near and finds the projection that mini-
mised the squared reconstruction error.

Given a dataset D = {xq,...,xy}, with
x, € RP, Zﬂil x,; = 0.

By using the orthonormal basis {ui}?zls

D
T
Z Xpuiuy
i=M+1
—_—

M
_ Tyt
X”—§ Xpuju;+
i=1

| ——

X;, €n

x;, is the projected vector and ¢, is
the reconstruction error. uy,...,up are
called the principal component vectors.
xpuy,...,xjup,n = 1,...,N, are called
the principal component scores.

PCA finds uy,...,up by minimising the
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sum of square errors:

§=N-1 Z{:}:] X, X, is the covariance ma-
trix for the data.
4.2 Lagrange Multipliers

The method of Lagrange Multipliers al-
lows us to solve optimization problems
with equality constraints.

The Lagrangian function: Maximize f(x, )
subject to g(x,v) =c:

L(x,y,4) = f(x,y)+ Ag(x,y)—c)

A is called the Lagrange multiplier.

For PCA, we use Lagrange multipliers
to guarantee that the {ui}f)zl are norma-
lized, i.e., ul.Tu,- =1fori=1,...,D. The
resulting Lagrangian is:

L({Ui}gM+1,/\M+1,...,/\D)
D
= Z [ul-rSui + A (1 fu;-rui)]
i=M+1

Hence Su; = Aju;. The u; and ); are ei-
genvectors and eigenvalues of S.

D

>

i=M+1

cost({ui}f):1 ) =

The PCA solution is given by the {u{}g1
such that:
1. upf41,...,up are eigenvectors of S

with the D — M smallest eigenva-
lues.

2. uy,...,up; are eigenvectors of §
with the M largest eigenvalues.

5 Clustering

5.1 K-means Clustering

Let s, ; = 1 if data point # is assigned to
cluster k and zero otherwise. Note that

K
Zk:l Spk = 1.

K-means tries to minimise the cost func-

tion C with respect to {Sn,k} and {my},
subject to ) s, =1 and s, ; € {0,1}.

N

2
ZZS” Kl —mp|

n=1k=

C( Snk

K-means sequentially:

1. Minimises C with respect to {Sn,k};
holding {m} fixed.

Sp = argmin||x;, —my|l
k

2. Minimises C with respect to {my},

holding {Sn,k} fixed.

mj = mean (x,;, : 5, = k)

5.2 Mixture of Gaussians

For each data point 1...N sample
cluster membership: p(s, =k|0) = )
(Note Z,Ile n = 1) and sample data-
value given cluster —membership:
p(xnlsy =k 0)=N (xy;mp, ).

5.3 Kullback-Leibler Divergence

The KL-divergence is given by:

ZPl i

The properties of KL-divergence:

KL(p1(2)llp2(2)

1. Gibb’s inequality (non-negativity):
KL(p1(2)llp2(2)) = 0, equality at
p1(2) = p2(2).

2. Non-symmetric: KL (p1(z)|lp2(z)) =
KL(p2(2)llp1(2))-

We can obtain a lower bound on the log-
likelihood log p(x | ©) using an arbitrary
distribution over class memberships g(s):

F(q(s),0) =

logp(x|6)- Y _q(s)log —1°

p(s|x,0)

F(q(s),0) is called the free-energy which
equals to log-likelihood when g(s) = p(s |

x,0).
Zq

p(x|s,0)p(s|0)
q(s)

5.4 The Expectation Maximisation (EM)
Algorithm

From initial (random) parameters 0 ite-
ratet =1,..., T the two steps:

1. E step: For fixed 0;_;, maximi-
ze lower bound F(q(s),0¢_1)
wrt gq(s). As log likelihood
logp(x | 0) is independent of
q(s) this is equivalent to mini-
mizing KL (q(s)llp(s|x,0¢-1)), so
qe(s) = p(s]x,0.1).

2. M step: For fixed q;(s) maximize
the lower bound F (g+(s), 0) wrt 6.

0; = argmax
[}
Y ar(s)log(p(x|s,0)p(s | 0)

Mixture of Gaussians: Probability of the
observations given the latent variables
and the parameters, and the prior on la-
tent variables are:

1 2
1 == (xn—p)
2c7k

e
/ 2
27mk

plxnlsy =k 0)=

ryk is called the responsibility that com-
ponent k takes for data point n.

The M s:ep, o@ptimizing F(q(s),0) wrt the
parameters, 0:
i = ):2]:1 q(sy=17j)xy

! 22121‘7(511 =7)

. 2

o2 = Z,I;I:] q(sn :])(xn _P‘j)
! IRTICES)

N
ZQ(SH =J)

n=1

1

6 Sequence Modelling
6.1 Markov Models for Discrete Data

Markov models of order n are called n-
gram models.

First order Markov (bi-gram):

PV, Y2, 9T) =
p@)p@21y1)...p

{1,...,K} with in-
. s T

itial state probabilities p(y; =k) = 712 B

and transition probabilities (stocha- P17 X1:T) = I_IP(Xt | xe-1)p (91 [ 1)
stic matrix) p(y;=k|y—1=1) = Ty, t=
(LK Tii=1).

Second order Markov (tri-gram):

@t lyr-1) @ @ @
) () @

Discrete states y; €

—_

Marginalise latents to obtain fully
connected model:

7.1 Linear Gaussian State Space Mo-
dels (LGSSMs)

Continuous Hidden State x; € RK:

pW1,¥2,--,9T) =
p@)p@21y1)...p

KO0

The transition probabilities

pwi=kly1=Lyr2=m = Tiim
Hence n—igrams require large multidi-

(vt ly7-1,97-2)

p(xs | xp21) =G (x3Ax1,Q)

mensional arrays. ) b d D
6.2 Markov Models for Continuous Da- Continuous Observed State y; € R™:
ta
AR(q) is the Auto-Regressive (AR) Gaussi- Pt [x¢) =G (v;Cxp, R)
an model of order g.
First order Markov (AR(1)):
7.2 Inference

Continuous vector states y; € RP with
initial state density p (v1) = G(v1; #o, Xo)
and transition density p(vs|y;—1) =
g(lft;/\lftfll E)

Distributional estimates:

marginal joint
Second order Markov (AR(2)): filter pxilvie) | p (1t | v1ee)
The transition densi-  smoother | p(x;|p1.7) | plxe.T | p17)
ty is P ¥ 19-1,91-2) =
G A1Y1-1 +Agyr2,X).  Joint  dis-

A - . Point estimates:
tribution over all variables is always

multivariate Gaussian.

1. Most probable state at ¢:
7 Hidden Markov Models

Discrete Hidden State x; € {1,...,K}: X = argmaxp (x; | v1.7)
X,

plxe =kl xe1 =1)=Tg, t

Continuous Observed State: 2. Most probable sequence:
p el xt =k) =G (ve; pg, Ti)
4 —
Discrete Observed State: LT = arglr:r;axp(xlj |91:7)
p@r=1lxt=k)=S5k
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Kalman Filter:

Given p(xi-1 1 91:0-1) =

g(xt_1;}4§j,Vtt:11) where the super-

script is the most recent data used
in prediction and the subscript is the
variable being predicted. Diffuse via
dynamics:

pxelv1:6-1) =
jp(xt | xe1)p (o1 1911 ) ey

Since x; = Ax; + Ql/zet, we obtain
-1

p(x; | V1:p-1) = g(xt;l‘t ’ Vtt_l ):
-1 -1
pit = Apiy
Vil =av/ AT +Q

Mean diffuses toward 0 and variance in-
flates. Combine with likelihood:

P (x| 91:) oc p (¢ [ 91:6-1) P (91 | x1)
:g(xt;yi,Vtt)
Defining the Kalman gain K; =
-1
ViICT (CviTiCT+R)

-1 -1
pe=pr Ky (Vt -Cui)

Forward Algorithm:

Given p(x;_1 =k |p1:-1) = pi_{ (k). Dif-
fuse via dynamics:

p(xt =kly1.4-1) =
K

Y plxi=klxa=0p(xig =111e1)
=1

We obtain p}~!(k) = X T(k,1)p!=} (1).
Combine with likelihood:

p(xt =k|3/1:r)0€
p(xt =k|y1:e-1)p e | x¢ = k)

Hence p} (k) o pi ™ (k)p (v¢ | x; = k).

(The End)



