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1 Signal Space and Channel Models
1.1 The Signal Space
For a continuous-time channel Y (t) =
X(t) +N (t), consider the vector-space of
finite-energy signals. Let L2 be the set of
complex-valued signals (functions) x(t)
with finite energy:∫ ∞

−∞
|x(t)|2dt <∞

L2 is a vector space which is a set of ele-
ments (called vectors) that is closed under
addition and scalar multiplication.
The inner product of x(.), y(.) ∈ L2 can be
defined as follows:

〈x,y〉 =
∫ ∞
−∞

x(t)y∗(t)dt

The norm of a signal is the square-root
of its energy:

‖x‖ =
√
〈x,x〉 =

[∫ ∞
−∞
|x(t)|2dt

]1/2

1.2 Orthonormal Basis
For any vector space L ⊂ L2, the set of
functions {fi (.), i = 1,2, . . .} is called an or-
thonormal basis for L if:

1. Every x(.) ∈ L can be expressed as:

x(t) =
∑
i

xifi (t)

The coefficients x1,x2, . . . are cal-
led the projection coefficients, and
x1f1(t),x2f2(t) . . . are the projec-
tions of the signal x(t) along
f1(t), f2(t), . . . , respectively.

2. The functions {fi (.), i = 1,2, . . .} are
orthonormal:〈

f` , fm
〉

=
{

1 if ` =m
0 if ` ,m

The orthonormal basis fi span the vec-
tor space L and the number of elements
(functions) in the basis is called the di-
mension of L.
The inner product between x(t) and y(t)
is:

〈x(t), y(t)〉 =
∑
i

xiy
∗
i

The energy of x(t) can therefore be writ-
ten as:∫

|x(t)|2dt = 〈x(t),x(t)〉 =
∑
i

|xi |2

Gram-Schmidt procedure: Given functions
{x1(t),x2(t), . . . ,xm(t)} , we find an ortho-
normal basis {f1(t), f2(t) . . .} as follows:

1. Let f1(t) = x1(t)
‖x1(t)‖ .

2. Find the part of x2 orthogonal to
f1, and normalise. Let

g2(t) = x2(t)−
〈
x2, f1

〉
f1(t)

Then, f2(t) = g2(t)
‖g2(t)‖ .

3. Find the part of x3 orthogonal to
f1, f2, and normalise. Let

g3(t) = x3(t)−
〈
x3, f1

〉
f1(t)

−
〈
x3, f2

〉
f2(t)

Then, f3(t) = g3(t)
‖g3(t)‖ .

If the dimension of the space is k, only
f1, . . . fk will be non-zero.
1.3 Modelling a Channel
Channels are often modelled as linear
time-invariant systems with additive noi-
se y(t) = h(t) ? x(t) + n(t). In frequency
domain:

Y (f ) =H(f )X(f ) +N (f )

Suppose the input signal x(t) is
band1imited to [−W0,W0], where |H(f )|
is constant, then we can compensate for
the constant channel gain and the con-
stant delay at the receiver. The channel
is effectively:

y(t) = x(t) +n(t)

Passband channel models: The signal is re-
stricted to have frequency components
in the band [fc +W,fc −W ], where fc is a
carrier frequency (typically fc �W ). If
|H(f )| is constant throughout the band
and delay is also a constant τ , then an
additive noise model y(t) = x(t)+n(t) can
be used.
Noise model:

y(t) = h(t) ? x(t) +n(t)

We model n(t) as a Gaussian noise pro-
cess and the effective channel is called an
additive Gaussian noise channel.

1.4 Modelling the Noise
Gaussian white noise process: For each
t,n(t) is Gaussian with zero mean and
autocorrelation function:

E[n(t)n(t + τ)] =
N0
2
δ(τ)

The power spectral density (PSD) is:

Sn(f ) =
N0
2

In practice, transmitted signal x(t) is
bandlimited. n(t) has PSD Sn(f ) = N0

2
for all f where the signal has non-zero
spectrum.
1.5 Signal Detection
Suppose that {φ1(t), . . . ,φK (t)} is an or-
thonormal basis for the signal set con-
sisting of M waveforms {s1(t), . . . , sM (t)}.
(Note that K ≤M)
Hence, each signal si (t) can be expressed
as:

si (t) = si,1φ1(t) + . . .+ si,KφK (t)

The projection coefficients for si (t) are:

si,j =
∫
si (t)φ

∗
j (t)dt

Thus each signal is equivalent to a K -
dimensional vector. For i = 1, . . . ,M:

si (t)↔ si =
[
si,1, . . . , si,K

]
The transimitted signal x(t) lies in the
space spanned by {φ1(t), . . . ,φK (t)}. Pro-
jecting y(t) onto the space spanned by
{φ1(t), . . . ,φK (t))} , we obtain the coeffi-
cient vector r = [r1, . . . , rK ]:

rj =
〈
x(t),φj (t)

〉
+
〈
n(t),φj (t)

〉
We write r = x+n, where x = [x1, . . . ,xK ]
and n = [n1, . . . ,nK ] are the projection co-
efficient vectors of the signal x(t) and noi-
se n(t), respectively.
Let {φm(t)}m∈Z be any orthonormal set
of functions, and n(t) be a Gaussian noise
white noise process with zero mean and
spectral density N0/2. For m ∈Z:

nm =
∫ ∞
−∞

n(t)φm(t)dt

Then {nm}m∈Z are i.i.d. Gaussian with
zero mean and variance N0

2 .

1.6 Optimal Detection
If x̂ represents the vector decoded by the
receiver, we wish to minimise the proba-
bility of detection error P (x̂ , x).
Given transmitted vector x ∈ S , suppo-
se r is generated according to the condi-
tional distribution P (r | x). The optimal
detection rule that minimizes the proba-
bility of detection error is the Maximum
a posteriori probability (MAP) rule:

x̂ = argmax
si∈S

P
(
x = si | r

)
= argmax

si∈S
P
(
x = si

)
f
(
r | x = si

)
If prior distribution on the signal vectors
is uniform, the MAP rule becomes the
maximum-likelihood (ML) decoding rule:

X̂ = argmax
si∈S

f
(
r | x = si

)
For additive white Gaussian noise
(AWGN) n(t):

f
(
r | x = si

)
=

1

(πN0)K/2
e−‖r−si‖

2/N0

If the prior distribution over the signal
vectors is uniform, the optimal detection
rule is minimum distance decoding:

x̂ML = argmin
si∈S

∥∥∥r − si∥∥∥2

Suppose the prior probabilities of the si-
gnal vectors are P

(
x = si

)
= pi :

x̂MAP = argmin
si∈S

ln
1
pi

+

∥∥∥r − si∥∥∥2

N0

Probability of detection error:

Pe =
∑
si∈S

P
(
x = si

)
P
(
x̂ , si | x = si

)
2 Baseband Transmission
2.1 Pulse Amplitude Modulation
The most common modulation scheme
for a baseband channel with additive
Gaussian noise is Pulse Amplitude Mo-
dulation (PAM).
The set of values the bits are mapped
to is called the constellation C. In a con-
stellation with M symbols, each symbol
represents log2M bits.

The pulse waveform is a unit-energy base-
band waveform denoted p(t). A sequence
of constellation symbols X0,X1,X2, . . . is
used to generate a baseband signal as fol-
lows:

x(t) =
∑
m

Xmp(t −mT )

T is called the symbol time of the pulse.
The transmission rate is 1

T symbols / sec

or log2M
T bits/second.

Time Decay vs. Bandwidth Trade-off: We
want p(t) to decay quickly in time but
also be approximately band-limited.
Orthonormality: We choose p(t) so that
the shifted pulses {p(t −mT )}m∈Z form
an orthonormal basis.
Denoting φm(t) = p(t −mT ), the PAM si-
gnal is:

x(t) =
∑
m

Xmφm(t)

Projecting y(t) onto the space spanned
by {φ1(t),φ2(t)) , . . .} , we obtain the coef-
ficients, we have Yk = Xk +Nk , for k ∈Z,
where nk is the projection coefficient of
the noise with the basis function φm:

Nk =
〈
n(t),φk(t)

〉
= 〈n(t),p(t − kT )〉

2.2 Matched Filter
Let the filter impulse response be q(t) =
p(−t). Since y(t) =

∑
mXmp(t−mT )+n(t),

the filter output is y(t) ? q(t):

r(t) =
∑
m

Xm

∫ ∞
−∞

p(τ −mT )p(τ − t)dτ

+
∫ ∞
−∞

n(τ)p(τ − t)dτ

Sampling at t = kT , we get r(kT ) = Xk +
Nk .
2.3 Optimal Detection
Optimal (MAP) detection rule to recover
X from Y = X +N when Y = y:

X̂(y) = argmax
c∈C

P (X = c)f (y | X = c)

If all the symbols in the constellation are
equally likely, i.e. P (X = c) is the same
for all symbols c ∈ C, then the MAP rule
becomes:

X̂ = argmax
c∈C

f (y | X = c)
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This is the maximum-likelihood (ML) de-
coding rule.
For anM -point constellation with equal-
ly likely symbols, the average energy per
symbol Es = Eb log2M.

The signal-to-noise ratio Eb
N0

is a key pa-
rameter of a transmission scheme. Pe is
often plotted as a function of Eb

N0
.

2.4 The Nyquist Pulse Criterion
When there is no noise, the filter output
is:

r(t) =
∑
k

Xk

∫ ∞
−∞

q(u)p(t − kT −u)du

=
∑
k

Xkg(t − kT )

p(t) is sometimes called transmit filter,
q(t) the receive filter, and g(t) the overall
filter:

g(t) = q(t) ? p(t) =
∫ ∞
−∞

q(u)p(t −u)du

If we want r(mT ) = Xm for all integersm,
then g(t) should satisfy:

g(mT ) =
{

1, m = 0
0, m = . . . ,−2,−1,1,2,1, . . .

Otherwise, we have inter-symbol interfe-
rence (ISI).
Nyquist Pulse Criterion: Let G(f ) denote
the Fourier transform of the effective pul-
se g(t). Then the time-domain condition
for no ISI is equivalent to:

∞∑
n=−∞

G
(
f − n

T

)
= T

The Nyquist pulse criterion implies that
in order to have no ISI, G(f ) must have
bandwidth at least 1/(2T ).

If the pulse bandwidth B lies in
(

1
2T ,

1
T

]
and G(f ) is real and even, then for all
∆ ∈

[
0, 1

2T

)
we need:

G
( 1

2T
−∆

)
+G

( 1
2T

+∆

)
= T

This condition is called band-edge symme-
try.

With the matched filter q(t) = p(−t), the
orthonormal shifts property of p(t) (in
time domain) is equivalent to G(f ) =
|P (f )|2 satisfying the Nyquist pulse crite-
rion.
2.5 Power Spectral Density
The power spectral density (PSD) of the
PAM signal describes the average power
in any frequency band. To calculate the
PSD, we will consider a slightly modified
PAM signal:

x(t) =
∞∑

k=−∞
Xkp(t − kT −Θ)

The random dither (delay) Θ make x(t) a
wide-sense stationary (WSS) process.
We assume that the Xk ’s are drawn
from a constellation with zero mean and
the random process {Xk}k=∞

k=−∞ is a WSS
discrete-time process.
The autocovariance function of x(t) is:

Rx(t + τ, t) =
1
T

∞∑
m=−∞

Rx[m]Rp(τ −mT )

Rp(τ) is defined as
∫∞
−∞ p(v)p(v−τ)dv. For

real p(t):

F
[
Rp(τ)

]
= P (f )P (−f ) = |P (f )|2

Therefore the PSD of the transmitted
PAM signal x(t) is:

Sx(f ) =
|P (f )|2

T

∞∑
m=−∞

RX [m]e−j2πmf T

When the symbols {Xk} are independent:

RX [m] =
{

E

[
X2
k

]
= Es, m = 0

0, m , 0

Es denotes the average energy per con-
stellation symbol. Then the formulas for
autocovariance and PSD of x(t) simplify
to:

Rx(τ) =
Es
T
Rp(τ), Sx(f ) =

Es
T
|P (f )|2

Parseval’s Theorem: The average power of
the PAM waveform is then calculated as:

Es
T

∫ ∞
−∞
|P (f )|2df =

Es
T

∫ ∞
−∞
|p(t)|2dt

If the pulse p(t) has unit energy, then
power of PAM signal is Es/T . If the mat-
ched receive filter is chosen as q(t) =

p(−t), then the overall filter frequency
response is:

G(f ) = P (f )P (−f ) = |P (f )|2

The PSD can be written as:

Sx(f ) =
Es
T
G(f )

3 Passband Modulation
3.1 Upconverted PAM
Up-convert a PAM signal to passband by
multiplying with a carrier:

x(t) = xb(t)cos(2πfct)

=

∑
k

Xkp(t − kT )

cos(2πfct)

The passband signal x(t) has spectrum:

X(f ) =
1
2

[Xb (f − fc) +Xb (f + fc)]

Due to Xb(−f ) = X∗b(f ), the lower side-
band in X(f ) will be completely determi-
ned by the upper one (and vice versa). If
the bandwidth of the PAM signal is W,
then the passband signal has bandwidth
2W .
3.2 Quadrature Amplitude Modulation
For Quadrature Amplitude Modulation
(QAM), the constellation from which the
symbols Xk are drawn can be complex-
valued.
The QAM signal is generated as x(t) =
Re

[√
2xb(t)ej2πfct

]
. Define the following

functions for k ∈Z:

f rk (t) = p(t − kT )
√

2cos(2πfct)

f ik (t) = −p(t − kT )
√

2sin(2πfct)

The transmitted QAM waveform can be
expressed as:

x(t) =
∑
k

[
Xrkf

r
k (t) +Xikf

i
k (t)

]
The set of functions

{
f rk (t), f ik (t)

}
, k ∈Z is

an orthonormal set.
3.3 Demodulation
At the receiver, we have:

y(t) =
∑
k

[
Xrkf

r
k (t) +Xikf

i
k (t)

]
+n(t)

As p(t) is a baseband pulse bandlimi-
ted to [−W,W ], we can reject the high-
frequency components using low-pass fil-
ters. At the output of the low-pass filter
after carrier multiplication, we get:

yr (t) =
∑
k

Xrkp(t − kT ) +nr (t)

yi (t) =
∑
k

Xikp(t − kT ) +ni (t)

If we choose receive filter q(t) = p(−t) so
that the overall filter g(t) = p(t) ? p(−t)
satisfies Nyquist pulse criterion, then:

Y rm = Xrm +N rm

Y im = Xim +N im

N rm,N
i
m are samples of nr (t) ? q(t) and

ni (t) ? q(t) at time mT .

Since
{
f r1 (t), f r2 (t), . . . , f i1 (t), f i2 (t), . . .

}
form

an orthonormal basis, the random va-
riables N r1 ,N

r
2 , . . . ,N

i
1,N

i
2, . . . are i.i.d. ∼

N
(
0, N0

2

)
.

3.4 Optimal Detection
The optimal rule for detecting a QAM
symbol X from Y = X +N is the MAP
rule:

X̂ = argmax
x∈C

P (X = x) · f (Y = y | X = x)

If the constellation symbols are equal-
ly likely MAP rule reduces to max-
likelihood (ML):

X̂ML = argmax
x

f (Y = y | X = x)

= argmax
x=(xr ,xi)

1
πN0

e
− (yr−xr )2+(yi−xi)2

N0

For i.i.d. Gaussian noise, ML is therefore
equivalent to minimum-distance deco-
ding:

X̂ = argmin
x
‖y − x‖2

= argmin
x
‖x‖2 − 2xT y

The ML decoding rule for Phase Shift
Keying (PSK) is X̂ = argmin

x
θ(x,y).

3.5 Frequency Shi� Keying
In Frequency Shift Keying (FSK), the infor-
mation modulates the frequency of the
carrier. To transmit message i ∈ {1, . . . ,M}
in any symbol period [`T , (` + 1)T ), the
basis function fi is:√

2
T
cos

(
2π

(
fc + (2i − (M + 1))

∆f

2

)
t

)
∆f = 1

2T = fc
K for some large integer K .

The set {f1(t), . . . , fM (t)} forms an ortho-
normal basis. The M symbols are repre-
sented by M frequencies, with adjacent
frequencies separated by ∆f .

We can express the FSK signal in terms of
the basis functions as x(t) =

∑M
k=1 xkfk(t).

For message i the projection coefficients
are:

[x1, . . . ,xi , . . .xM ] =
[
0, . . . ,

√
Es, . . . ,0

]
The demodulator computes:

Yi =
〈
y(t), fi (t)

〉
= Xi +Ni

The noise variables Nj ∼ N
(
0, N0

2

)
are i.i.d.. Hence [Y1, . . . ,Yi , . . . ,YM ] =[
N1, . . . ,

√
Es +Ni , . . . ,NM

]
.

The optimal detection rule for M-ary
FSK is m̂ = argmax1≤i≤M yi .
The total bandwidth required for M-ary

FSK is (M−1)∆f = (M−1)
2 T . The bandwidth

efficiency η is defined as rate/bandwidth:

ηQAM ≈ log2M bits /s/Hz

ηMFSK =
2log2M

M − 1
bits /s/Hz

4 Modulation Concepts
4.1 Channel Equalisation
A channel frequency response H(f ) that
is not flat in the transmission band is
called frequency-selective or dispersive. In
general:

y(t) =
∫
h(u)x(t −u)du +n(t)

=
∑
k

Xkf (t − kT ) +n(t)

f (t) = p(t) ? h(t). At the receiver: In the
absence of noise, r(t) =

∑
kXkg(t − kT ),

where the overall filter is:

g(t) = f (t) ? q(t) = p(t) ? h(t) ? q(t)
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Defining rm = r(mT ), and gm = g(mT ):

rm =
∑
`

g`Xm−`

Taking z-transforms on both sides, we
obtain R(z) = X(z)G(z).
4.2 The Zero-forcing Equaliser
This equalising filter HE(z) = 1/G(z) is
called the zero-forcing filter as it com-
pletely eliminates the ISI. The output
of the filter (in the noiseless case) has
z-transform:

Y (z) = R(z)HE(z) = X(z)

In the presence of noise, the output of
the zero-forcing filter is:

ym = xm + ñm

The sequence {ñm} is the inverse z -
transform of N (z)/G(z).

HE(z) =
1∑L

`=0 g`z
−`

= h0 + h1z
−1 + h2z

−2 + h3z
−3 + . . .

The above zero forcing filter is IIR, i.e.,
impulse response h has infinitely many
non-zero coefficients.
The IIR filter can be implemented using
r = y ? g:

yn =
1
g0

[rn − g1yn−1 − . . .− gLyn−L]

We want to design an equalising filter
with K + 1 taps, with impulse response
h = [h0, . . . ,hK ]. If we pass r through the
filter, the output is:

ym = Xmf0 +
L+K∑
j=1

Xm−jfj +
K∑
i=0

hinm−i

f = [f0, . . . , fL+K ] = h ? g:

fj =
K∑
i=0

higj−i

For an ideal zero-forcing equaliser, we
would like f0 = 1, fj = 0 for j = 1, . . . ,L+

K . Determine h = [h0, . . . ,hK ] by solving:

f0 = h0g0 = 1
f1 = h0g1 + g0h1 = 0

...

fK = h0gK + h1gK−1 + . . .+ hKg0 = 0

The output of the FIR ZF equaliser with
K + 1 taps is:

ym = Xm +
L+K∑
j=K+1

Xm−jfj +
K∑
i=0

hinm−i

Assuming the noise variables {nm} are
i.i.d.N

(
0,σ2

)
the output noise variance

is:

E

 K∑
i=0

hinm−i


2

= σ2

 K∑
i=0

h2
i


Thus there is a trade-off between minimi-
sing residual interference and increasing
the noise variance.
4.3 MMSE Equalisation
The minimum mean squared error (MM-
SE) equaliser explicitly tries to minimise
the expected squared error between Xm
and its estimate X̂m.
For a (K + 1) -tap MMSE equaliser, the
estimate X̂m is generated as:

X̂m = c0rm + c1rm+1 + . . .+ cK rm+K

We want to choose c = [c0, . . . , cK ] in order
to minimise:

E

[(
Xm − X̂m

)2
]

= E

[(
Xm − rT c

)2
]

The optimal c = [c0, . . . , ck] satisfies:

∂f (c)
∂c0

= E

[
rm

(
Xm − rT c

)]
= 0

...

∂f (c)
∂cK

= E

[
rm+K

(
Xm − rT c

)]
= 0

Therefore E [rXm] = E

[
rrT

]
c, the MMSE

equaliser is: c = R−1p, where

R = E

[
rrT

]
, p = E [rXm]

4.4 Orthogonal Frequency Division
Multiplexing

The term-by-term multiplication of DFT
corresponds to circular convolution in
the discrete-time domain, but the mat-
ched filter output is a linear convolution.
OFDM transmitter:

1. Encode the information in DFT do-
main by choosingX[0], . . . ,X[N−1]
from a QAM constellation

2. Take inverse DFT to produ-
ce the time-domain sequence
x[0], . . . ,x[N − 1].

3. Insert cyclic prefix:

{x[−L], . . . ,x[−1]} =
{x[N −L], . . . ,x[N − 1]}

4. Using time-domain sequence,
form:

xb(t) =
N−1∑
m=−L

x[m]p (t −mTs)

5. Transmitted passband signal:

x(t) = Re
[
xb(t)ej2πfct

]
Each OFDM block has total duration
(L+N )Ts seconds. N QAM symbols are
transmitted per block.
OFDM receiver: Received signal: y(t) =
x(t) ? h(t) +n(t).

1. Carrier multiplication + low-pass
filter + matched filter

2. Sampled matched filter output at
t = kTs:

r[k] =
L∑
`=0

g[`]× [k − `] +n[k]

The outputs r[−L], . . . , r[−1] are dis-
carded.

3. Compute the N -point DFT of
r[0], . . . , r[N − 1] to get:

R[n] = G[n]X[n] +N [n]

4. Use MAP rule to recover the QAM
symbols X[n].

The period of duration LTs to send the
cyclic prefix is called the guard interval or
guard period. The guard period occupies
L/(L+N ) of the OFDM block.
The DFT coefficients {G[n]} correspond
to samples of the spectrum G(f ) at N
equally spaced freqs between −1

2Ts
and

1
2Ts

.

G(f ) = P (f )Hb(f )P (−f ) = |P (f )|2Hb(f )

For 0 ≤ n ≤ (N − 1), we have G[n] =
G (fn) = |P (fn)|2Hb (fn):

fn =

 1
Ts

n
N , 0 ≤ n < N

2
1
Ts

(
n−N
N

)
, N

2 ≤ n ≤ (N − 1)

If pulse such that P (f ) is roughly con-
stant ( say c) for −1

2Ts
≤ f ≤ 1

2Ts
, then:

R[n] = cHb (fn)X[n] +N [n]

Can interpret OFDM as having
N sub-carriers of frequencies
f0, . . . , fN−1. Spacing between adja-
cent sub-carriers is 1

NTs
. In pass-

band, the sub-carrier frequencies are
{fc + f0, fc + f1, . . . , fc + fN−1}.
Bandwidth of OFDM signal = 1

Ts
.

Rate of transmission: N
(L+N )Ts

QAM sym-

bols per second
5 Channel Coding
5.1 Convolutional Codes
In convolutional codes, a stream of input
bits is transformed into a stream of code
bits using a shift register (filter).

In a general convolutional code, at each
time instant: k input bits are fed into a
shift register with S stages, and its con-
tents are used to produce n code bits, for
a rate of R = k/n.

The generation of the code bits can be
described by n generators, which indica-
te which shift register bits are added to
generate each code bit.

g1 = (10), g2 = (11)

We obtain the code bits x =(
x

(1)
1 ,x

(1)
2 ,x

(1)
3 , . . . ,x

(m)
1 ,x

(m)
2 ,x

(m)
3

)
sim-

ply by interleaving the convolutions of
s with each of the generators: xi = s ∗ gi .
We can express this in terms of the
Z-transform (with Z = z−1:

g1(Z) = 1, g2(Z) = 1 +Z

Hence x(Z) = s
(
Z3

)
g1

(
Z3

)
+

Zs
(
Z3

)
g2

(
Z3

)
.

Convolutional codes can also be repre-
sented via state diagrams corresponding
to finite-state machines.
5.2 Decoding Convolutional Codes
Optimal decoding is minimum distance
decoding: If we receive y, we need to find
a path in the trellis which gives a code
sequence x̂ minimising d(y, x̂).

There is a simple dynamic programming
algorithm to find the minimum-distance
path called the Viterbi algorithm.
Consider the free distance dfree defined
as the minimum weight among all co-
dewords generated with the code star-
ting and ending in the all-zero state. If
dfree = d, then any collection of ≤

⌊
d−1

2

⌋
errors can be corrected, as long as these
error bursts are not too close to one ano-
ther.
5.3 Transfer Function
Modified state diagram:

1. Label every branch by D raised
to the Hamming weight of the se-
quence it produces.

2. Add a J to every branch, counting
total path length.

3. Add an N to each branch corre-
sponding to an input bit 1.

From the diagram we can obtain the ex-
tended state equations which we can solve
to obtain the extended transfer function
T (J,N ,D).
If the greatest common divisor of the
polynomials {g1(Z), g2(Z), . . . , gn(Z)} is of
the form Z` for some integer ` ≥ 0, then
the encoder defined by the generators
{g1, g2, . . . , gn} is not catastrophic.
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6 Routing and Congestion Control
6.1 Transmission Control Protocol

(TCP)
Congestion occurs when too many sources
sending too much data too fast for the
network to handle. It manifests as packet
loss (buffer overflow at routers) or large
delay (long queues at router buffers).
Let T denote the RTT: T = round-trip ti-
me between packet being sent and ack

received. At time t, the rate R(t) = W (t)
T

packets/second.
TCP-Reno:

1. Variable window size W regulates
transmission speed.

2. Slow start: Multiplicative (i.e.,
exponential) rate increase until
ssthresh/T packets/second

3. Congestion avoidance: Additive
(i.e., linear) rate increase until de-
lay/loss detected.

4. Fast retransmit when delay detec-
ted.

5. Fast recovery when timeout/loss
detected.

Loss (timeout) is treated as a more se-
rious issue than delay (3 dupack’s).
Consider a continuous-time approxima-
te model and let q(t) = loss rate at time t.
At equilibrium, R′(t) =W ′(t)/T = 0.
TCP square-root law:

R(t) =
1

T
√
β

√
1− q(t)
q(t)

6.2 Dijkstra’s Routing Algorithm
6.3 The Bellman-Ford Routing Algo-

rithm

(The End)


