
The Geometry of n Dimensions  
In general, an  matrix , transforms an -dimensional vector  into a corresponding -
dimensional vector :

Vector Spaces and Subspaces  

For a general non-square  matrix:

The  are the column vectors of  and they sweep out the part of  that we can get to by 
multiplying a vector in  by .

The region mapped out in  as the  vary is called a vector space and it is a straightforward 
generalisation to arbitrary dimensions of the concept of a line or a plane.

A vector space in  is the set of  of the form:

 is itself a vector space and “smaller” ones within it are said to be sub-spaces of .
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Column Space  

The vector space spanned by the columns of a general  matrix  is called the column 
space of

. The dimension (in the degrees of freedom sense) of column space is called the rank of .

Column space is part of  and so the number of independent columns of  can not 
exceed , i.e. . In addition, there are only  columns, so .

If  lies in column space, then  has at least one solution.

If  is not in column space, then  has no solution.

If , so that column space = whole of , then  must lie in column space.

Matrix Multiplication  

For the general case of  where  is an  matrix,  is an  matrix,  is an 
 matrix,

If we denote the columns of  as  and the rows of  as :

A product of vectors  is referred to as an outer product of  and . (The dot product 
 is also called an inner product). So that  is the sum of the outer products of each of 

the columns of  with the corresponding row of .

For the -th column of :
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The matrix multiplication can also be interpreted as:

For the -th row of :

LU Factorisation  
An  matrix  can be factorized into the form  where  is lower-triangular  
matrix with 1's down the leading diagonal and  is an upper-
echelon matrix which is the same shape as .

Lower triangular means that  has non-zero terms only on and below the leading diagonal:

Upper echelon means that all non-zero elements are on or above the leading diagonal:

If  is square, then so is  which is then said to be upper triangular.

Solution to Matrix Equation  

 is solved in two steps, find  from  and then find  from .

Partial pivoting  

The technique of scanning the remaining non-zero elements in the next column in the remainder 
matrix to be zeroed and choosing the largest (in absolute value) at every stage is called partial 
pivoting. 

LU decomposition with partial pivoting is  where  is the permutation matrix. LU in its 
partial-pivoting mode is immune to introducing ill-conditioning into a problem.
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Bases for the Column Space and Row Space  

Column Space = all vectors formed by taking a linear combination of the columns of :

Row Space = all vectors formed by taking a linear combination of the rows of :

 form a basis for the column space of  (the set of  for which the corresponding  is non-
zero).

 form a basis for the row space of  (the set of non-zero ).

The dimension of column space is equal to the columns of  that correspond to non-zero 
rows of . The dimension of row space is also equal to the number of non-zero rows of . 
For any matrix, number of independent rows is equal to number of independent columns 
(rank of ).

Properties of the L & U Matrices  

The columns of  and the non-zero rows of  are independent.

 always exists and . 

Since the column space of  is the whole of , any vector in  can be expressed in terms of 
the columns of .

 is the same shape as  and  has an inverse if and only if  has one.

Algorithmic Complexity  

For large , the LU factorisation requires  operations. Once the LU factorisation has been 

completed, it requires  operations to complete the solution of .

The Solution of Matrix Equation  

General Solution  
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Set all free variables to zero and find a particular solution .

Set the RHS to zero, give each free variable in turn the value 1 while the others are zero, and 
solve to find a set of vectors which span the null space of .

Properties of the Fundamental Subspaces  

Bases for the Four Spaces  

Column Space: the columns of  used, corresponding to non-zero rows of .

Null Space (same as the Null Space of ): set the free variables to 1 in turn and solve .

Row Space: all non-zero rows of .

Left Null Space: set the free variables to 1 in turn and solve .
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Properties of the Fundamental Subspaces  

The dimension of row-space is equal to the number of non-zero rows of  which is equal to 
the number of basic variables (those with pivots).

The dimension of the null space of of  is equal to the number of free variables (the 
number of variables without pivots).

A vector  is in null-space if, and only if, it is orthogonal to every row of  and hence 
orthogonal to every vector in row space. (Null space and Row Space are orthogonal)

Every vector in Column Space is orthogonal to every vector in Left Null Space.

Row space and Null Space are said to be orthogonal complements in , and Column Space 
and Left Null space are orthogonal complements in .

The Big Picture  

Row space and Null space represent all of . Column space and Left Null space similarly carve 
up .

If a vector  has a non-zero  then  has no solution. The various compatibility 
conditions necessary for there to be a of solution can be stated as  being orthogonal to each of 
the vectors in a basis of Left Null Space.
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If we restrict the vectors that  operates on to Row Space, then it is clear that  maps an r-
dimensional space onto Column Space (which is also r-dimensional). The mapping is, therefore, 
reversible.

Least Squares Solution and QR Factorisation  
Suppose we have carried out an experiment, in which the parameter  has been measured at 
different times , and that we are seeking to fit a linear relationship to the data  or for 
a quadratic fit .

In matrix form the linear case is:

These equations are inconsistent and we need to find the best fit:  as close as possible to .

For least squares problems, then, the  matrix  usually has the following properties:

 (often )

The columns of  are independent. (rank of  is .)

The least squares solution for  (=  ) minimises  and this can 
be multiplied out and then partial differentiation used to find the minimum.

Alternatively, for any vector  where . So we need to get rid of  
and just concentrate on  by multiplying the original problem by .

In summary, the least squares solution to an inconsistent system  of  equations in  
unknowns satisfies .

Assuming that the columns of  are independent,  is invertible and 

The Gram-Schmidt Process  

Another way of removing the part of  that is not in the column space of  is to project  directly 
onto column space.

The Gram-Schmidt procedure is a way of generating a set of mutually orthogonal unit vectors 
(orthogonal + unit = orthonormal) from an arbitrary set. Armed with these, taking projections is 
much easier.

We start with the columns of  and derive the ’s as follows:

1. Turn the first one into a unit vector

2. Take  and form  by first subtracting off the bit that's parallel to  and then normalising
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3. Repeat this process for the other 's

QR Factorisation  

If we assemble the vectors  from the previous section as the columns of a matrix , and vectors 
 as those of a matrix , then we have .

The columns of  are mutually orthogonal vectors which span the column space of .

The matrix  is square, upper triangular with non-zero elements down the diagonal. It therefore 
has rank  and is invertible.

Simplification of Least Squares Solution  

Given the set of equations  where  is an  matrix whose columns are independent 
(  and rank of  is ) then the least squares solution satisfies:

Projection onto Column Space  

The projection of  onto the column space of :

The projection matrix  is given by:

Eigenvalues and Eigenvectors  
For a symmetric matrix , the eigenvalues are real and the eigenvectors orthogonal.
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Characteristic Equation  

For there to be a nonzero solution for ,  is singular.

For a general  matrix , the characteristic equation takes the form:

The product of the eigenvalues is simply the determinant of .

A matrix which does not have a full set of eigenvectors is said to be defective.

Diagonal Form of a Matrix  

In general, the eigenvectors for non-symmetric matrices are not orthogonal. However, the 
columns of  are independent. This means that the column space of  has dimension  and 
therefore must be the whole of . (  is invertible)

A relationship of this form is referred to as a similarity relationship and  and  are said to be 
similar matrices.
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 is similar to  since  and 

Similar matrices have the same set of eigenvalues and the eigenvectors are related by .

A matrix which is similar to a diagonal matrix is said to be diagonalisable. 

Diagonalisable (Non-Symmetric) Matrices  

Any matrix with distinct eigenvalues can be diagonalized.

Non-symmetric matrices with repeated eigenvalues may be diagonalisable, or they may not.

Singular Value Decomposition  
Non-square matrices do not have eigenvalues and eigenvectors but there is a related concept 
called singular values.

The Eigenvalue Problem  

If  is , then  is  and  is . It is also symmetric since .

 is, therefore, diagonalisable and the eigenvectors of  can be chosen to be orthogonal, 
unit vectors.

The eigenvalues of  can not be negative.

There will be  which are non-zero and  which are zero where .

For a zero eigenvalue,  and so  is in the null space of .

For a non-zero eigenvalue,  is non-zero and so  is not in the null space of . But all the 's 
are orthogonal, so it must be orthogonal to all of the ’s which are in null space, and hence must 
be in the row space of .
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Singular Values  

Define the singular values of  by  for . (non-zero eigenvalues of )

The norm of  (a measure of the size of the matrix, where a vector has a magnitude) is equal to 
the largest singular value of .

Basis for Column Space and Null Space  

’s are orthogonal, unit vectors in the column space of . They are eigenvectors for  with the 
same eigenvalues .

We can complete this set by adding eigenvectors corresponding to eigenvalue zero for . They 
must be in the left-null space of )and can be chosen to be orthogonal, unit vectors.

af://n199
af://n204


Singular Value Decomposition  

Since  for , we can write .

Because  is an orthogonal matrix, its inverse is its transpose.

af://n212

	The Geometry of n Dimensions
	Vector Spaces and Subspaces
	Column Space
	Matrix Multiplication

	LU Factorisation
	Solution to Matrix Equation
	Partial pivoting
	Bases for the Column Space and Row Space
	Properties of the L & U Matrices
	Algorithmic Complexity

	The Solution of Matrix Equation
	General Solution

	Properties of the Fundamental Subspaces
	Bases for the Four Spaces
	Properties of the Fundamental Subspaces
	The Big Picture

	Least Squares Solution and QR Factorisation
	The Gram-Schmidt Process
	QR Factorisation
	Simplification of Least Squares Solution
	Projection onto Column Space

	Eigenvalues and Eigenvectors
	Characteristic Equation
	Diagonal Form of a Matrix
	Diagonalisable (Non-Symmetric) Matrices

	Singular Value Decomposition
	The Eigenvalue Problem
	Singular Values
	Basis for Column Space and Null Space
	Singular Value Decomposition


