The Geometry of n Dimensions

In general, an $m \times n$ matrix **A**, transforms an n-dimensional vector \underline{x} into a corresponding m dimensional vector b :

 $\mathbf{A}\underline{x} = \underline{b}$

Vector Spaces and Subspaces

For a general non-square $m \times n$ matrix:

$$
\mathbf{A}\underline{x} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = x_1 \underline{a}_1 + x_2 \underline{a}_2 + \cdots + x_n \underline{a}_n
$$

The a_i are the **column vectors** of **A** and they sweep out the part of R^m that we can get to by multiplying a vector in R^n by A .

The region mapped out in R^m as the x_i vary is called a **vector space** and it is a straightforward generalisation to arbitrary dimensions of the concept of a line or a plane.

A vector space in R^m is the set of x of the form:

$$
\underline{x} = \lambda \underline{u} + \mu \underline{v} + \cdots
$$

 R^m is itself a vector space and "smaller" ones within it are said to be sub-spaces of R^m .

For example: The non-trivial sub-spaces of R^3 are

Column Space

The vector space spanned by the columns of a general $m \times n$ matrix **A** is called the **column space** of

A. The dimension (in the degrees of freedom sense) of column space is called the rank of A.

Column space is part of R^m and so the number of independent columns of A can not exceed m, i.e. $\text{rank}(A) \leq m$. In addition, there are only n columns, so $\text{rank}(A) \leq n$.

If \underline{b} lies in column space, then $\mathbf{A}\underline{x} = \underline{b}$ has at least one solution.

If \underline{b} is not in column space, then $\mathbf{A}\underline{x} = \underline{b}$ has no solution.

If $\text{rank}(A) = m$, so that column space = whole of R^m , then b must lie in column space.

Matrix Multiplication

For the general case of $A = BC$ where A is an $m \times n$ matrix, B is an $m \times k$ matrix, C is an $k \times n$ matrix.

 Γ

$$
\begin{bmatrix}\n\uparrow & \uparrow & \cdots & \uparrow \\
\frac{a_1}{4} & \frac{a_2}{4} & \cdots & \frac{a_n}{4}\n\end{bmatrix} =\n\begin{bmatrix}\n\uparrow & \uparrow & \cdots & \uparrow \\
\frac{b_1}{4} & \frac{b_2}{4} & \cdots & \frac{b_k}{4}\n\end{bmatrix}\n\begin{bmatrix}\nc_{11} & c_{12} & \cdots & c_{1n} \\
c_{21} & c_{22} & \cdots & c_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
c_{k1} & c_{k2} & \cdots & c_{kn}\n\end{bmatrix}
$$
\n
$$
\mathbf{A} =\n\begin{bmatrix}\n\uparrow \\
\frac{b_1}{4}\n\end{bmatrix}\n\begin{bmatrix}\nc_{11} & c_{12} & \cdots & c_{1n}\n\end{bmatrix} +\n\begin{bmatrix}\n\uparrow \\
\frac{b_2}{4}\n\end{bmatrix}\n\begin{bmatrix}\nc_{21} & c_{22} & \cdots & c_{2n}\n\end{bmatrix} + \cdots +\n\begin{bmatrix}\n\uparrow \\
\frac{b_k}{4}\n\end{bmatrix}\n\begin{bmatrix}\nc_{k1} & c_{k2} & \cdots & c_{kn}\n\end{bmatrix}
$$

 $\overline{1}$

If we denote the columns of **B** as \underline{b}_i and the rows of **C** as \underline{c}_i :

$$
\mathbf{A} = \underline{b}_1 \underline{\tilde{c}}_1^T + \underline{b}_2 \underline{\tilde{c}}_2^T + \cdots + \underline{b}_k \underline{\tilde{c}}_k^T
$$

A product of vectors \underline{xy}^T is referred to as an **outer product** of <u>x</u> and <u>y</u>. (The dot product $\underline{x}^T y = \underline{x} \cdot y$ is also called an **inner product**). So that $\bf A$ is the sum of the outer products of each of the columns of $\bf B$ with the corresponding row of $\bf C$.

For the j -th column of A :

$$
\begin{bmatrix} \uparrow \\ \frac{a_j}{\downarrow} \end{bmatrix} = \begin{bmatrix} \uparrow \\ \frac{b_1}{\downarrow} \end{bmatrix} [c_{1j}] + \begin{bmatrix} \uparrow \\ \frac{b_2}{\downarrow} \end{bmatrix} [c_{2j}] + \cdots + \begin{bmatrix} \uparrow \\ \frac{b_k}{\downarrow} \end{bmatrix} [c_{kj}]
$$

The matrix multiplication can also be interpreted as:

$$
\begin{bmatrix} \leftarrow & \underline{\tilde{a}}_1 & \rightarrow \\ \leftarrow & \underline{\tilde{a}}_2 & \rightarrow \\ \vdots & \vdots & \vdots \\ \leftarrow & \underline{\tilde{a}}_m & \rightarrow \end{bmatrix} = \begin{bmatrix} b_{11} \\ b_{21} \\ \vdots \\ b_{m1} \end{bmatrix} \begin{bmatrix} \leftarrow & \underline{\tilde{c}}_1 & \rightarrow \end{bmatrix} + \begin{bmatrix} b_{12} \\ b_{22} \\ \vdots \\ b_{m2} \end{bmatrix} \begin{bmatrix} \leftarrow & \underline{\tilde{c}}_2 & \rightarrow \end{bmatrix} + \cdots + \begin{bmatrix} b_{1k} \\ b_{2k} \\ \vdots \\ b_{mk} \end{bmatrix} \begin{bmatrix} \leftarrow & \underline{\tilde{c}}_k & \rightarrow \end{bmatrix}
$$

For the i -th row of \mathbf{A} :

$$
[\leftarrow \underline{\tilde{a}}_i \rightarrow] = [b_{i1}] [\leftarrow \underline{\tilde{c}}_1 \rightarrow] + [b_{i2}] [\leftarrow \underline{\tilde{c}}_2 \rightarrow] + \cdots + [b_{ik}] [\leftarrow \underline{\tilde{c}}_k \rightarrow]
$$

LU Factorisation

An $m \times n$ matrix **A** can be factorized into the form $A = LU$ where **L** is **lower-triangular** $m \times m$ matrix with 1's down the leading diagonal and U is an *upper***echelon** matrix which is the same shape as **A**.

Lower triangular means that L has non-zero terms only on and below the leading diagonal:

$$
\mathbf{L} = \begin{bmatrix} 1 & 0 & \cdots & 0 \\ * & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ * & * & \cdots & 1 \end{bmatrix}
$$

Upper echelon means that all non-zero elements are on or above the leading diagonal:

$$
\mathbf{U} = \begin{bmatrix} * & * & \cdots & * \\ 0 & * & \cdots & * \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & * \end{bmatrix}
$$

If **A** is square, then so is **U** which is then said to be upper triangular.

$$
\mathbf{A} = \underline{l}_1 \underline{\tilde{u}}_1^T + \underline{l}_2 \underline{\tilde{u}}_2^T + \cdots + \underline{l}_k \underline{\tilde{u}}_k^T
$$

Solution to Matrix Equation

$$
\mathbf{A}\underline{x} = (\mathbf{L}\mathbf{U}\underline{x}) = \mathbf{L}(\mathbf{U}\underline{x}) = \underline{b}
$$

 $\mathbf{A}\underline{x}=\underline{b}$ is solved in two steps, find \underline{c} from $\mathbf{L}\underline{c}=\underline{b}$ and then find \underline{x} from $\mathbf{U}\underline{x}=\underline{c}$.

Partial pivoting

The technique of scanning the remaining non-zero elements in the next column in the remainder matrix to be zeroed and choosing the largest (in absolute value) at every stage is called **partial pivoting**.

LU decomposition with partial pivoting is $\mathbf{PA} = \mathbf{LU}$ where P is the permutation matrix. LU in its partial-pivoting mode is immune to introducing ill-conditioning into a problem.

Bases for the Column Space and Row Space

Column Space = all vectors formed by taking a linear combination of the columns of A:

 $\lambda_1 \underline{a}_1 + \lambda_2 \underline{a}_2 + \cdots + \lambda_n \underline{a}_n$

Row Space = all vectors formed by taking a linear combination of the rows of \mathbf{A} :

 $\mu_1 \underline{\tilde{a}}_1 + \mu_2 \underline{\tilde{a}}_2 + \cdots + \mu_m \underline{\tilde{a}}_m$

 l_i form a basis for the column space of **A** (the set of l_i for which the corresponding \tilde{u} is nonzero).

$$
\begin{bmatrix} \uparrow \\ \frac{a_j}{\downarrow} \end{bmatrix} = \begin{bmatrix} \uparrow \\ \frac{l_1}{\downarrow} \end{bmatrix} [u_{1j}] + \begin{bmatrix} \uparrow \\ \frac{l_2}{\downarrow} \end{bmatrix} [u_{2j}] + \cdots + \begin{bmatrix} \uparrow \\ \frac{l_m}{\downarrow} \end{bmatrix} [u_{mj}]
$$

 $\underline{a}_i = u_{1i} \underline{l}_1 + u_{2i} \underline{l}_2 + \cdots + u_{mj} \underline{l}_m$

 \tilde{u}_i form a basis for the row space of **A** (the set of non-zero \tilde{u}_i).

$$
[\leftarrow \underline{\tilde{a}}_i \rightarrow] = [l_{i1}] [\leftarrow \underline{\tilde{u}}_1 \rightarrow] + [l_{i2}] [\leftarrow \underline{\tilde{u}}_2 \rightarrow] + \cdots + [l_{im}] [\leftarrow \underline{\tilde{u}}_m \rightarrow]
$$

 $\tilde{a}_i = l_{i1}\tilde{u}_1 + l_{i2}\tilde{u}_2 + \cdots + l_{im}\tilde{u}_m$

The dimension of column space is equal to the columns of L that correspond to non-zero rows of U . The dimension of row space is also equal to the number of non-zero rows of U . For any matrix, number of independent rows is equal to number of independent columns (rank of \bf{A}).

Properties of the L & U Matrices

The columns of L and the non-zero rows of U are independent.

```
{\bf L}^{-1} always exists and \det({\bf L})=1.
```
Since the column space of **L** is the whole of R^m , any vector in R^m can be expressed in terms of the columns of L.

 U is the same shape as A and U has an inverse if and only if A has one.

Algorithmic Complexity

For large n, the LU factorisation requires $\approx \frac{2}{3}n^3$ operations. Once the LU factorisation has been completed, it requires $\approx 2n^2$ operations to complete the solution of ${\bf A}\underline{x}=\underline{b}.$

The Solution of Matrix Equation

General Solution

Set all free variables to zero and find a particular solution x_0 .

Set the RHS to zero, give each free variable in turn the value 1 while the others are zero, and solve to find a set of vectors which span the null space of A .

Properties of the Fundamental Subspaces

Bases for the Four Spaces

Column Space: the columns of **L** used, corresponding to non-zero rows of **U**.

Null Space (same as the Null Space of U): set the free variables to 1 in turn and solve $U_{\underline{x}} = 0$.

Row Space: all non-zero rows of U.

Left Null Space: set the free variables to 1 in turn and solve $\mathbf{L}_{RED}^T \underline{b} = 0$.

Properties of the Fundamental Subspaces

The dimension of row-space is equal to the number of non-zero rows of U which is equal to the number of basic variables (those with pivots).

Dimension of row space = dimension of column space = $r = \text{rank}(\mathbf{A})$

The dimension of the null space of of A is equal to the number of free variables (the number of variables without pivots).

Dimension of null space $= n - r$

A vector \underline{n} is in null-space if, and only if, it is orthogonal to every row of $\bf A$ and hence orthogonal to every vector in row space. (Null space and Row Space are orthogonal)

$$
\mathbf{A}_{\underline{n}} = \begin{bmatrix} \leftarrow & \underline{\tilde{a}}_1 & \rightarrow \\ \leftarrow & \underline{\tilde{a}}_2 & \rightarrow \\ \vdots & \vdots & \vdots \\ \leftarrow & \underline{\tilde{a}}_m & \rightarrow \end{bmatrix} \begin{bmatrix} \uparrow \\ \frac{n}{\downarrow} \end{bmatrix} = \begin{bmatrix} \underline{\tilde{a}}_1 \cdot \underline{n} \\ \underline{\tilde{a}}_2 \cdot \underline{n} \\ \vdots \\ \underline{\tilde{a}}_m \cdot \underline{n} \end{bmatrix} = 0
$$

Every vector in Column Space is orthogonal to every vector in Left Null Space.

Dimension of left null-space $= m - r$

Row space and Null Space are said to be **orthogonal complements** in $Rⁿ$, and Column Space and Left Null space are orthogonal complements in R^m .

The Big Picture

Row space and Null space represent all of $Rⁿ$. Column space and Left Null space similarly carve up R^m .

$$
\underline{x} = \underline{x}_{row} + \underline{x}_{null}
$$

$$
\underline{b} = \underline{b}_{col} + \underline{b}_{left}
$$

 $\underline{x}_{row} \cdot \underline{x}_{null} = \underline{b}_{col} \cdot \underline{x}_{left} = 0$

Column space

If a vector \underline{b} has a non-zero \underline{b}_{left} then $\mathbf{A}\underline{x} = \underline{b}$ has no solution. The various compatibility conditions necessary for there to be a of solution can be stated as b being orthogonal to each of the vectors in a basis of Left Null Space.

If we restrict the vectors that $\bf A$ operates on to Row Space, then it is clear that $\bf A$ maps an rdimensional space onto Column Space (which is also r-dimensional). The mapping is, therefore, reversible.

Least Squares Solution and QR Factorisation

Suppose we have carried out an experiment, in which the parameter b has been measured at different times t, and that we are seeking to fit a linear relationship to the data $b = C + Dt$ or for a quadratic fit $b = C + Dt + Et^2$.

In matrix form the linear case is:

$$
\begin{bmatrix} 1 & t_1 \\ 1 & t_2 \\ \vdots & \vdots \\ 1 & t_m \end{bmatrix} \begin{bmatrix} C \\ D \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix}
$$

These equations are **inconsistent** and we need to find **the best fit**: $A\overline{x}$ as close as possible to **b**.

For least squares problems, then, the $m \times n$ matrix **A** usually has the following properties:

 $m > n$ (often $m \gg n$)

The columns of \bf{A} are independent. (rank of \bf{A} is n .)

The least squares solution for $x = \bar{x}$) minimises $|Ax - b|^2 = (Ax - b) \cdot (Ax - b)$ and this can be multiplied out and then partial differentiation used to find the minimum.

Alternatively, for any vector $\mathbf{b} = \mathbf{b}_{col} + \mathbf{b}_{left}$ where $\mathbf{b}_{col} \cdot \mathbf{b}_{left} = 0$. So we need to get rid of \mathbf{b}_{left} and just concentrate on \mathbf{b}_{col} by multiplying the original problem by \mathbf{A}^{t} .

$$
\mathbf{A}^t \mathbf{A} \mathbf{x} = \mathbf{A}^t \mathbf{b} = \mathbf{A}^t \mathbf{b}_{col} + \mathbf{A}^t \mathbf{b}_{left} = \mathbf{A}^t \mathbf{b}_{col}
$$

In summary, the least squares solution to an inconsistent system $\mathbf{A}\mathbf{x} = \mathbf{b}$ of m equations in n unknowns satisfies $\mathbf{A}^t \mathbf{A} \mathbf{x} = \mathbf{A}^t \mathbf{b}$.

Assuming that the columns of ${\bf A}$ are independent, ${\bf A}^t{\bf A}$ is invertible and ${\bf \overline{x}} = \left({\bf A}^t{\bf A}\right)^{-1}{\bf A}^t{\bf b}$

The Gram-Schmidt Process

Another way of removing the part of b that is not in the column space of A is to project b directly onto column space.

The **Gram-Schmidt procedure** is a way of generating a set of mutually orthogonal unit vectors (orthogonal + unit = orthonormal) from an arbitrary set. Armed with these, taking projections is much easier.

 $\mathbf{b}_{col} = \alpha_1 \mathbf{q}_1 + \alpha_2 \mathbf{q}_2 + \cdots$

$$
\alpha_i = \mathbf{q}_i \cdot \mathbf{b}
$$

We start with the columns of A and derive the q 's as follows:

1. Turn the first one into a unit vector

$$
\mathbf{q}_1 = \tfrac{\mathbf{a}_1}{|\mathbf{a}_1|}
$$

2. Take \mathbf{a}_2 and form \mathbf{q}_2 by first subtracting off the bit that's parallel to \mathbf{a}_1 and then normalising

 $\tilde{\mathbf{a}}_2 = \mathbf{a}_2 - (\mathbf{q}_1 \cdot \mathbf{a}_2) \mathbf{q}_1$

$$
\mathbf{q}_2=\tfrac{\mathbf{\tilde{a}}_2}{|\mathbf{\tilde{a}}_2|}
$$

3. Repeat this process for the other a's

$$
\begin{aligned} &\mathbf{\tilde{a}}_i = \mathbf{a}_i - \left(\mathbf{q}_1 \cdot \mathbf{a}_i\right) \mathbf{q}_1 - \left(\mathbf{q}_2 \cdot \mathbf{a}_i\right) \mathbf{q}_2 - \cdots \\ &\mathbf{q}_i = \tfrac{\tilde{\mathbf{a}}_i}{\left|\tilde{\mathbf{a}}_i\right|} \end{aligned}
$$

QR Factorisation

If we assemble the vectors a_i from the previous section as the columns of a matrix A_i , and vectors \mathbf{q}_i as those of a matrix **Q**, then we have $\mathbf{A} = \mathbf{Q}\mathbf{R}$.

The columns of Q are mutually orthogonal vectors which span the column space of Q .

$\mathbf{Q}^t \mathbf{Q} = \mathbf{I}$

The matrix $\bf R$ is square, upper triangular with non-zero elements down the diagonal. It therefore has rank n and is invertible.

Simplification of Least Squares Solution

Given the set of equations $Ax = b$ where A is an $m \times n$ matrix whose columns are independent $(m \ge n$ and rank of **A** is *n*) then the least squares solution satisfies:

$$
\mathbf{A}^t \mathbf{A} \overline{\mathbf{x}} = \mathbf{A}^t \mathbf{b}
$$

 $\mathbf{R}\overline{\mathbf{x}} = \mathbf{Q}^t\mathbf{b}$

Projection onto Column Space

The projection of \bf{b} onto the column space of \bf{A} :

$$
\mathbf{b}_{col} = \mathbf{A} (\mathbf{A}^t \mathbf{A})^{-1} \mathbf{A}^t \mathbf{b} = \mathbf{P} \mathbf{b}
$$

The projection matrix P is given by:

$$
\mathbf{P} = \mathbf{A}\big(\mathbf{A}^t\mathbf{A}\big)^{-1}\mathbf{A}^t = \mathbf{Q}\mathbf{Q}^t
$$

$$
\mathbf{b}_{\textit{col}}=(\mathbf{q}_1\cdot\mathbf{b})\,\mathbf{q}_1+(\mathbf{q}_2\cdot\mathbf{b})\,\mathbf{q}_2+\cdots+(\mathbf{q}_n\cdot\mathbf{b})\,\mathbf{q}_n
$$

$$
\mathbf{b}_{col} = \begin{bmatrix} \uparrow & \uparrow & \cdots & \uparrow \\ \mathbf{q}_1 & \mathbf{q}_2 & \cdots & \mathbf{q}_n \\ \downarrow & \downarrow & \cdots & \downarrow \end{bmatrix} \begin{bmatrix} \mathbf{q}_1 \cdot \mathbf{b} \\ \mathbf{q}_2 \cdot \mathbf{b} \\ \vdots \\ \mathbf{q}_n \cdot \mathbf{b} \end{bmatrix} = \begin{bmatrix} \uparrow & \uparrow & \cdots & \uparrow \\ \mathbf{q}_1 & \mathbf{q}_2 & \cdots & \mathbf{q}_n \\ \downarrow & \downarrow & \cdots & \downarrow \end{bmatrix} \begin{bmatrix} \leftarrow & \mathbf{q}_1 & \rightarrow \\ \leftarrow & \mathbf{q}_2 & \rightarrow \\ \vdots & \vdots & \vdots \\ \leftarrow & \mathbf{q}_n & \rightarrow \end{bmatrix} \begin{bmatrix} \uparrow \\ \mathbf{b} \\ \downarrow \end{bmatrix} = \mathbf{Q} \mathbf{Q}^t \mathbf{b}
$$

Eigenvalues and Eigenvectors

For a symmetric matrix A , the eigenvalues are real and the eigenvectors orthogonal.

$$
\mathbf{A} \begin{bmatrix} \uparrow & \uparrow & \cdots & \uparrow \\ \underline{u}_1 & \underline{u}_2 & \cdots & \underline{u}_n \\ \downarrow & \downarrow & \cdots & \downarrow \end{bmatrix} = \begin{bmatrix} \uparrow & \uparrow & \cdots & \uparrow \\ \underline{u}_1 & \underline{u}_2 & \cdots & \underline{u}_n \\ \downarrow & \downarrow & \cdots & \downarrow \end{bmatrix} \begin{bmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{bmatrix}
$$

 $\mathbf{A} = \mathbf{U} \mathbf{\Lambda} \mathbf{U}^{-1} = \mathbf{U} \mathbf{\Lambda} \mathbf{U}^T$ $\mathbf{A}^k = (\mathbf{U}\mathbf{\Lambda}\mathbf{U}^{-1}) (\mathbf{U}\mathbf{\Lambda}\mathbf{U}^{-1}) \cdots (\mathbf{U}\mathbf{\Lambda}\mathbf{U}^{-1}) = \mathbf{U}\mathbf{\Lambda}^k\mathbf{U}^{-1}$

Characteristic Equation

 $(\mathbf{A} - \lambda \mathbf{I}) \mathbf{x} = 0$

For there to be a nonzero solution for \mathbf{x} , $\mathbf{A} - \lambda \mathbf{I}$ is singular.

For a general $n \times n$ matrix **A**, the **characteristic equation** takes the form:

$$
P(\lambda) = \det (\mathbf{A} - \lambda \mathbf{I}) = \begin{vmatrix} a_{11} - \lambda & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} - \lambda & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} - \lambda \end{vmatrix} = 0
$$

\n
$$
P(\lambda) = (-\lambda)^n + \alpha_1(-\lambda)^{n-1} + \alpha_2(-\lambda)^{n-2} + \cdots + \alpha_n = (\lambda_1 - \lambda)(\lambda_2 - \lambda) \cdots (\lambda_n - \lambda) = 0
$$

The product of the eigenvalues is simply the determinant of A .

A matrix which does not have a full set of eigenvectors is said to be **defective**.

Diagonal Form of a Matrix

In general, the eigenvectors for non-symmetric matrices are not orthogonal. However, the columns of X are independent. This means that the column space of X has dimension n and therefore must be the whole of R^n . (**X** is invertible)

$$
\mathbf{A} = \mathbf{X} \boldsymbol{\Lambda} \mathbf{X}^{-1}
$$

A relationship of this form is referred to as a **similarity** relationship and Λ and Λ are said to be similar matrices.

 $\mathbf{A}\mathbf{x} = \mathbf{M}^{-1}\mathbf{A}'\mathbf{y} = \mathbf{M}^{-1}\mathbf{A}'\mathbf{M}\mathbf{x}$

 $\mathbf A$ is similar to $\mathbf A^{'}$ since $\mathbf A=\mathbf M^{-1}\mathbf A^{'}\mathbf M$ and $\mathbf A^{'}=\mathbf M\mathbf A\mathbf M^{-1}$

Similar matrices have the same set of eigenvalues and the eigenvectors are related by $y = Mx$.

A matrix which is similar to a diagonal matrix is said to be **diagonalisable**.

Diagonalisable (Non-Symmetric) Matrices

Any matrix with distinct eigenvalues can be diagonalized.

Non-symmetric matrices with repeated eigenvalues may be diagonalisable, or they may not.

Singular Value Decomposition

Non-square matrices do not have eigenvalues and eigenvectors but there is a related concept called **singular values**.

The Eigenvalue Problem

 $\mathbf{A}^t \mathbf{A}$ is, therefore, diagonalisable and the eigenvectors of $\mathbf{A}^t \mathbf{A}$ can be chosen to be orthogonal, unit vectors.

$A^t A = Q \Lambda Q^t$

The eigenvalues of $\mathbf{A}^{t} \mathbf{A}$ can not be negative.

$$
\mathbf{A}^t \mathbf{A} \mathbf{q} = \lambda \mathbf{q}
$$

 $\lambda = \frac{(\mathbf{A}\mathbf{q})^t\mathbf{A}\mathbf{q}}{\mathbf{q}^t\mathbf{q}} = \frac{|\mathbf{A}\mathbf{q}|^2}{|\mathbf{q}|^2}$

There will be r which are non-zero and $n-r$ which are zero where $r=\text{rank}(\mathbf{A})$.

For a zero eigenvalue, $Aq = 0$ and so q is in the null space of A .

For a non-zero eigenvalue, Aq is non-zero and so q is not in the null space of A . But all the q 's are orthogonal, so it must be orthogonal to all of the q's which are in null space, and hence must be in the row space of A .

Singular Values

Define the **singular values** of A by $\sigma_i = \sqrt{\lambda_i}$ for $1 \leq i < r$. (non-zero eigenvalues of $A^t A$)

$$
\mathbf{A}^t \mathbf{A} \mathbf{q}_i = \sigma_i^2 \mathbf{q}_i
$$

The norm of A (a measure of the size of the matrix, where a vector has a magnitude) is equal to the largest singular value of A .

 $\|\mathbf{A}\| = \sigma_{max}$

Basis for Column Space and Null Space

$$
\mathbf{\hat{q}}_i = \tfrac{\mathbf{Aq}_i}{\sigma_i}
$$

 \mathbf{q}' s are orthogonal, unit vectors in the column space of \mathbf{A} . They are eigenvectors for $\mathbf{A}\mathbf{A}^t$ with the same eigenvalues σ_i^2 .

$$
\mathbf{A}\left(\mathbf{A}^{t} \mathbf{A} \mathbf{q}\right)=\mathbf{A} \mathbf{A}^{t} \left(\mathbf{A} \mathbf{q}\right)=\sigma^{2} \mathbf{A} \mathbf{q}
$$

We can complete this set by adding eigenvectors corresponding to eigenvalue zero for $\mathbf{A} \mathbf{A}^t$. They must be in the left-null space of \bf{A})and can be chosen to be orthogonal, unit vectors.

$$
\mathbf{A}\mathbf{A}^t = \hat{\mathbf{Q}}\hat{\mathbf{\Lambda}}\hat{\mathbf{Q}}^t
$$

 $\hat{\mathbf{q}}_1$... $\hat{\mathbf{q}}_r$ are an orthogonal basis for Column Space $\hat{\mathbf{q}}_{r+1}$... $\hat{\mathbf{q}}_m$ are an orthogonal basis for Left-Null Space

Singular Value Decomposition

Since $\mathbf{A}\mathbf{q}_i = \sigma_i \mathbf{\hat{q}}_i$ for $1 \leq i < r$, we can write $\mathbf{A}\mathbf{Q} = \mathbf{\hat{Q}}\mathbf{\hat{\Sigma}}$.

$$
\mathbf{A} \begin{bmatrix} \uparrow & \uparrow & \uparrow & \uparrow \\ \mathbf{q}_1 & \dots & \mathbf{q}_r & \mathbf{q}_{r+1} & \mathbf{q}_n \\ \downarrow & \downarrow & \downarrow & \downarrow \end{bmatrix} = \begin{bmatrix} \uparrow & \uparrow & \uparrow & \uparrow \\ \mathbf{\hat{q}}_1 & \dots & \mathbf{\hat{q}}_r & \mathbf{\hat{q}}_{r+1} & \dots & \mathbf{\hat{q}}_m \\ \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \end{bmatrix} \begin{bmatrix} \sigma_1 & & & & & 0 \\ & \cdots & & & & 0 \\ & & \sigma_r & & & \\ & & & 0 & \dots & \\ & & & & 0 & 0 \end{bmatrix}
$$

$$
= \begin{bmatrix} \uparrow & \uparrow & \uparrow & \uparrow \\ \sigma_1 \hat{\mathbf{q}}_1 & \dots & \sigma_r \hat{\mathbf{q}}_r & \mathbf{0} & \dots & \mathbf{0} \\ \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \end{bmatrix}
$$

Because Q is an orthogonal matrix, its inverse is its transpose.

 $\mathbf{A} = \mathbf{\hat{Q}} \mathbf{\Sigma} \mathbf{Q}^t$